首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds. These compounds are degraded via vanillate and syringate by a unique enzymatic system, composed of etherases, O demethylases, ring cleavage oxygenases and side chain cleaving enzymes. These unique and specific lignin modification enzymes are thought to be powerful tools for utilization of the most abundant aromatic biomass, lignin. Here, we focus on the genes and enzymes involved in β-aryl ether cleavage and biphenyl degradation. Two unique etherases are involved in the reductive cleavage of β-aryl ether. These two etherases have amino acid sequence similarity with the glutathione S-transferases, and use glutathione as a hydrogen donor. It was found that 5,5′-dehydrodivanillate, which is a typical lignin-related biphenyl structure, was transformed into 5-carboxyvanillate by the reaction sequence of O-demethylation, meta-ring cleavage, and hydrolysis, and the genes involved in the latter two reactions have been characterized. Vanillate and syringate are the most common intermediate metabolites in lignin catabolism. These compounds are initially O-demethylated and the resulting diol compounds, protocatechuate (PCA) and 3-O-methylgallate, respectively, are subjected to ring cleavage catalyzed by PCA 4,5-dioxygenase. The ring cleavage products generated are further degraded through the PCA 4,5-cleavage pathway. We have isolated and characterized genes for enzymes involved in this pathway. Disruption of a gene for 2-pyrone-4,6-dicarboxylate hydrolase (ligI) in this pathway suggested that an alternative route for 3-O-methylgallate degradation, in which ligI is not involved, would play a role in syringate catabolism. In this article, we describe the genetic and biochemical features of the S. paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. A possible application of the SYK-6 lignin degradation system to produce a valuable chemical material is also described. Received 01 May 1999/ Accepted in revised form 29 July 1999  相似文献   

2.
Sphingomonas paucimobilis SYK-6 is able to grow on various lignin-derived biaryls as the sole source of carbon and energy. These compounds are degraded to vanillate and syringate by the unique and specific enzymes in this strain. Vanillate and syringate are converted to protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by the tetrahydrofolate-dependent O-demethylases. Previous studies have suggested that these compounds are further degraded via the PCA 4,5-cleavage pathway. However, our subsequent analysis of the ligB insertion mutant, which encodes the beta subunit of PCA 4,5-dioxygenase, suggested that at least one alternative route is involved in 3MGA degradation. In the present study, we isolated the desZ gene, which confers 3MGA degradation activity on Escherichia coli. The deduced amino acid sequence of desZ showed ca. 20 to 43% identity with the type II extradiol dioxygenases. Gas chromatography-mass spectrometry analysis suggested that DesZ catalyzes the 3,4-cleavage of 3MGA. Disruption of both desZ and ligB in SYK-6 resulted in loss of the dioxygen-dependent 3MGA transformation activity, but the resulting mutant retained the ability to grow on syringate. We found that the cell extract of the desZ ligB double mutant was able to convert 3MGA to gallate when tetrahydrofolate was added to the reaction mixture, and the cell extract of this mutant degraded gallate to the same degree as the wild type did. All these results suggest that syringate is degraded through multiple 3MGA degradation pathways in which ligAB, desZ, 3MGA O-demethylase, and gallate dioxygenase are participants.  相似文献   

3.
Protocatechuate 4,5-dioxygenase has been purified 100-fold from 4-hydroxybenzoate grown cells of Rhizobium leguminosarum biovar viceae. The purification yielded a homogeneous preparation with specific activity of 321 Units · mg-1 protein. The molecular weight of the homodimeric native protein was 120,000, with subunit molecular weight of 62,000. The optimum pH for catalytic activity was 9.5 and the K m for protocatechuate was 20 M. Physical and catalytic properties of the R. leguminosarum protocatechuate 4,5-dioxygenase were different from the published characteristics of isofunctional enzymes from Pseudomonas paucimobilis and Comamonas testosteroni.Abbreviations P45D protocatechuate 4,5-dioxygenase - CAPS 3-[Cyclohexylamino]-1-propanesulfonic acid A preliminary account of this work was presented at the 93rd General Meeting of the American Society for Microbiology, Atlanta, GA, 1993.  相似文献   

4.
Sphingomonas paucimobilis degrades aerobically , , and -hexachlorocyclohexane. With -HCH, complete degradation occurred after 3 days but with and , and with -HCH, 98 and 56 % degradation occurred after 12 and 8 days of incubation, respectively. Pentachlorocyclohexene was formed as the primary metabolite during the degradation of all the HCH isomers. © Rapid Science Ltd. 1998  相似文献   

5.
Protocatechuate (PCA) is the key intermediate metabolite in the lignin degradation pathway of Sphingomonas paucimobilis SYK-6 and is metabolized to pyruvate and oxaloacetate via the PCA 4,5-cleavage pathway. We characterized the 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase gene (ligC). CHMS is the 4,5-cleavage product of PCA and is converted into 2-pyrone-4,6-dicarboxylate (PDC) by LigC. We found that ligC was located 295 bp downstream of ligB, which encodes the large subunit of the PCA 4,5-dioxygenase. The ligC gene consists of a 945-bp open reading frame encoding a polypeptide with a molecular mass of 34,590 Da. The deduced amino acid sequence of ligC showed 19 to 20% identity with 3-chlorobenzoate cis-dihydrodiol dehydrogenase of Alcaligenes sp. strain BR60 and phthalate cis-dihydrodiol dehydrogenases of Pseudomonas putida NMH102-2 and Burkholderia cepacia DBO1, which are unrelated to group I, II, and III microbial alcohol dehydrogenases (M. F. Reid and C. A. Fewson, Crit. Rev. Microbiol. 20:13-56, 1994). The ligC gene was expressed in Escherichia coli and LigC was purified to near homogeneity. Production of PDC from CHMS catalyzed by LigC was confirmed in the presence of NADP(+) by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. LigC is a homodimer. The isoelectric point, optimum pH, and optimum temperature were estimated to be 5.3, 8.0, and 25 degrees C, respectively. The K(m) for NADP(+) was estimated to be 24.6 +/- 1.5 microM, which was approximately 10 times lower than that for NAD(+) (252 +/- 3.9 microM). The K(m)s for CHMS in the presence of NADP(+) and NAD(+) are 26.0 +/- 0.5 and 20.6 +/- 1.0 microM, respectively. Disruption of ligC in S. paucimobilis SYK-6 prevented growth with vanillate. Only PCA was accumulated during the incubation of vanillate with the whole cells of the ligC insertion mutant (DLC), indicating a lack of PCA 4,5-dioxygenase activity in DLC. However, the introduction of ligC into DLC restored its ability to grow on vanillate. PDC was suggested to be an inducer for ligAB gene expression.  相似文献   

6.
Sphingomonas paucimobilis SYK-6 is able to grow on various dimeric lignin compounds, which are converted to vanillate and syringate by the actions of unique lignin degradation enzymes in this strain. Vanillate and syringate are degraded by the O-demethylase and converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, while the results suggested that 3MGA is degraded through another pathway in which PCA 4,5-dioxygenase is not involved. In a 10.5-kb EcoRI fragment carrying the genes for PCA 4,5-dioxygenase (ligAB), 2-pyrone-4,6-dicarboxylate hydrolase (ligI), and a portion of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (ligC), we found the ligJ gene encoding 4-oxalomesaconate (OMA) hydratase, which catalyzes the conversion of OMA into 4-carboxy-4-hydroxy-2-oxoadipate. The ligJ gene is transcribed in the same direction as ligABC genes and consists of an 1,023-bp open reading frame encoding a polypeptide with a molecular mass of 38,008 Da, which is located 73-bp upstream from ligA. The ligJ gene product (LigJ), expressed in Escherichia coli, was purified to near homogeneity and was estimated to be a homodimer (69.5 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9, and the optimal temperature is 30 degrees C. The K(m) for OMA and the V(max) were determined to be 138 microM and 440 U/mg, respectively. LigJ activity was inhibited by the addition of thiol reagents, suggesting that some cysteine residue is part of the catalytic site. The ligJ gene disruption in SYK-6 caused the growth defect on and the accumulation of common metabolites from both vanillate and syringate, indicating that the ligJ gene is essential to the degradation of these two compounds. These results indicated that syringate is converted into OMA via 3MGA, and it enters the PCA 4,5-cleavage pathway.  相似文献   

7.
The vanillin dehydrogenase gene (ligV), which conferred the ability to transform vanillin into vanillate on Escherichia coli, was isolated from Sphingomonas paucimobilis SYK-6. The ligV gene consists of a 1,440-bp open reading frame encoding a polypeptide with a molecular mass of 50,301 Da. The deduced amino acid sequence of ligV showed about 50% identity with the known vanillin dehydrogenases of Pseudomonas vanillin degraders. The gene product of ligV (LigV) produced in E. coli preferred NAD+ to NADP+ and exhibited a broad substrate preference, including vanillin, benzaldehyde, protocatechualdehyde, m-anisaldehyde, and p-hydroxybenzaldehyde, but the activity toward syringaldehyde was less than 5% of that toward vanillin. Insertional inactivation of ligV in SYK-6 indicated that ligV is essential for normal growth on vanillin. On the other hand, growth on syringaldehyde was only slightly affected by ligV disruption, indicating the presence of a syringaldehyde dehydrogenase gene or genes in SYK-6.  相似文献   

8.
9.
少动鞘脂单胞菌S1胞外多糖发酵工艺条件研究   总被引:9,自引:0,他引:9  
研究了摇瓶培养条件下少动鞘脂单胞菌引的胞外多糖的发酵工艺。S1菌的发酵产胶可采用二步发酵法:第一阶段,培养基成分为:蔗糖10g,NHNO 0.5g,KHOP 0.5g,MnSO 0.3g,MgSO 0.1g,吐温80 0.02g溶于蒸馏水并定容至1000mL,pH7.2±0.1,温度33℃~35℃,高溶氧。第二阶段,发酵 10~12h后,补加蔗糖40g/L,温度  相似文献   

10.
Sphingomonas paucimobilis SYK-6 has the ability to transform a lignin-related biphenyl compound, 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), to 5-carboxyvanillic acid (5CVA) via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). In the 4.9-kb HindIII fragment containing the OH-DDVA meta-cleavage dioxygenase gene (ligZ), we found a novel hydrolase gene (ligY) responsible for the conversion of the meta-cleavage compound of OH-DDVA to 5CVA. Incorporation of 18O from H218O into 5CVA indicated there was a hydrolytic conversion of the OH-DDVA meta-cleavage compound to 5CVA. LigY exhibited hydrolase activity only toward the meta-cleavage compound of OH-DDVA, suggesting its restricted substrate specificity.  相似文献   

11.
Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino- and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naphthalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunctional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the catalytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the 2′-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they show about 40–60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BN6 has also been used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6 was studied in continuous cultures and was described by mathematical models. Received 02 April 1999/ Accepted in revised form 09 July 1999  相似文献   

12.
少动鞘氨醇单胞菌(Sphingomonas paucimobilis) 是一种少见的条件致病菌,可引起手术后感染、创伤后腿部溃疡、菌血症、脑膜炎、慢性蜂窝织炎、手术后眼内炎等,未查见累及心瓣膜的报道.本文报道1例由少动鞘氨醇单胞菌所致感染性心内膜炎的病例.该患者为中年男性,因"反复发热2月余"入院.以发热伴左上腹痛为首...  相似文献   

13.

Exopolymers have been associated with the initial adhesion of bacteria, which is the primary step for biofilm formation. Moreover, the polymeric matrix of biofilms has a considerable influence on some of the most important physical and physiological properties of biofilms. The role of extracellular polymers in biofilm formation was studied using three mutants of Sphingomonas paucimobilis with increasing capabilities for exopolymer production. The physical, biochemical and physiological properties of three different layers of each biofilm were determined. The layers were detached by submitting the biofilm to increasing shear stress. The results revealed that the presence of exopolymers in the growth medium was essential for biofilm formation. The mutant producing the highest amount of exopolymer formed very thick biofilms, while the biofilms formed by the medium exopolymer producer were on average 8 times thinner. The lowest exopolymer producer did not form biofilm. In both types of biofilms, exopolymer density increased with depth, although this tendency was more significant in thinner biofilms. Cell distribution was also more heterogeneous in thinner biofilms, exhibiting a greater accumulation of cells in the inner layers. The thicker biofilms had very low activity in the inner layer. This was related to a high accumulation of proteins and DNA in this layer due to cell lysis and hydrolytic activity. Activity in the thin biofilm was constant throughout its depth, suggesting that there was no nutrient limitation. The production of exopolymers by each cell was constant throughout the depth of the biofilms, although it was greater in the case of the higher producer.  相似文献   

14.
A common structure of substrates of lignostilbenedioxygenases was investigated using synthesized stilbenes. Cell-free extracts of Sphingomonas paucimobilis TMY1009 degraded only trans-4-hydroxystilbene and trans-4-hydroxy-3-methoxystilbene. Other stilbenes that had no 4-hydroxyl group and had a cis structure were not substrates for lignostilbenedioxygenases. These results indicate that a 4-hydroxyl group and trans-structure is necessary for the common structure for substrates of lignostilbenedioxygenases.  相似文献   

15.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704–2709, 1990), we found the ligI gene encoding 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 μM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557–565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154–1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.  相似文献   

16.
Sphingomonas sp. strain HV3 (formerly Pseudomonas sp. HV3), which degrades aromatics and chloroaromatics, harbors a mega-plasmid, pSKY4. A sequenced 4 kb fragment of the plasmid reveals a novel gene organization for catechol meta-pathway genes. The putative meta operon starts with the cmpF gene encoding a 2-hydroxymuconic semialdehyde hydrolase. The gene has a 6 bp overlap with the previously characterized ring-cleavage gene, catechol 2,3-dioxygenase, cmpE. Downstream of cmpE is a 429 bp open reading frame of unknown function. Gene cmpC, encoding a 2-hydroxymuconic semialdehyde dehydrogenase, starts 44 bp further downstream. It has the highest homology to 2-hydroxymuconic semialdehyde dehydrogenases of dmp and xyl pathways and to XylC from the marine oligotroph Cycloclasticus oligotrophus. The gene organization is different from other known meta pathways. This is the first report of organization of plasmid-encoded meta-pathway genes in the genus Sphingomonas.  相似文献   

17.
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.  相似文献   

18.
Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate,p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locusncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 andncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). RecombinantEscherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted inC. glutamicum, the ability to degrade and assimilate protocatechuate,p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity ofC. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded byncg12314 andncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the Gen Bank. The functional identification of genes and their unique organization inC. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.  相似文献   

19.
Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin‐degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β‐aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β‐aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.  相似文献   

20.
Sphingomonas paucimobilis SYK-6 degrades a lignin-related biphenyl compound, 5,5′-dehydrodivanillate (DDVA), to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by the DDVA O-demethylase (LigX), the ring cleavage oxygenase (LigZ), and the meta-cleavage compound hydrolase (LigY). In this study we examined the degradation step of 5CVA. 5CVA was transformed to vanillate, O-demethylated, and further degraded via the protocatechuate 4,5-cleavage pathway by this strain. A cosmid clone which conferred the 5CVA degradation activity to a host strain was isolated. In the 7.0-kb EcoRI fragment of the cosmid we found a 1,002-bp open reading frame responsible for the conversion of 5CVA to vanillate, and we designated it ligW. The gene product of ligW (LigW) catalyzed the decarboxylation of 5CVA to produce vanillate along with the specific incorporation of deuterium from deuterium oxide, indicating that LigW is a nonoxidative decarboxylase of 5CVA. LigW did not require any metal ions or cofactors for its activity. The decarboxylase activity was specific to 5CVA. Inhibition experiments with 5CVA analogs suggested that two carboxyl groups oriented meta to each other in 5CVA are important to the substrate recognition by LigW. Gene walking analysis indicated that the ligW gene was located on the 18-kb DNA region with other DDVA catabolic genes, including ligZ, ligY, and ligX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号