首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
Biochemical methods were used to analyse B-F and B-G antigens of the chicken major histocompatibility complex (MHC). In a panel of 12 inbred or partially inbred chicken lines the MHC haplotypes, originally defined by serological and histogenetical methods, were compared. Using monoclonal 18-6G2, allele-specific B-G patterns were obtained by immunoblotting. Comparison of B-G12 and B-G2 revealed a shared banding pattern, but additional products were detected for B-G12. The B-F products of B2 and B12 had identical IEF patterns. The identical B-F products and partially shared B-G products might explain the serological cross-reaction between these haplotypes. In addition, the IEF pattern of B-F21 appeared similar to B-F2 and B-F12, but the partial proteolysis map showed a clear difference. Although two B-F bands could be detected per haplotype, no evidence for the expression of more than one B-F locus was found. The biochemical methods enabled a precise definition of expressed MHC products and can be a useful tool for the identification of B-alleles in other chicken lines or outbred chickens for their MHC antigens.  相似文献   

2.
Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits.  相似文献   

3.
The major histocompatibility complex in the chicken   总被引:4,自引:0,他引:4  
The chicken B complex is the first non-mammalian MHC characterized at the molecular level. It differs from the human HLA and murine H-2 complexes in the small size of the class I (B-F) and class II (B-L) genes and their close proximity. This proximity accounts for the absence of recombination between B-F and B-L genes and leaves no space for class III genes. Moreover the B-F and B-L genes are tightly linked to unrelated genes absent from mammalian MHCs, such as the polymorphic B-G genes and a member of the G protein beta subunit family. This linkage could form the basis for resistance to viral-induced tumors associated with some B complex haplotypes.  相似文献   

4.
Diversity and locus specificity of chicken MHC B class I sequences   总被引:6,自引:0,他引:6  
The major histocompatibility complex B (MHC B) region in a standard haplotype of Leghorn chickens contains two closely linked class I loci, B-FI and B-FIV. Few sequences of B-FI alleles are available, and therefore alleles of the two loci have not been compared with regard to sequence diversity or locus specificity. Here, we report eight new B-F alpha 1/alpha 2-coding sequences from broiler chicken MHC B haplotypes, and a unique recombinant between the two B-F loci. The new sequences were combined with existing B-F sequences from Leghorn and broiler haplotypes for analysis. On the basis of phylogenetic analysis and conserved sequence motifs, B-F sequences separated into two groups (Groups A and B), corresponding to B-FIV and B-FI locus, respectively. Every broiler haplotype had one B-F sequence in Group A and the second B-F sequence, if it existed, clustered in Group B. Group B (presumptive B-FI locus) sequences identified in broiler haplotypes resembled the human MHC class I HLA-C locus in their distinctive pattern of allelic polymorphism. Compared with B-FIV, B-FI alleles were less polymorphic and possessed a conserved locus-specific motif in the alpha1 helix, but nevertheless demonstrated evidence of diversifying selection. One B-FI alpha 1/alpha 2-coding nucleotide sequence was completely conserved in four different broiler haplotypes, but each allele differed in the exon encoding the alpha 3 domain.  相似文献   

5.
In Leghorn (laying) chickens, susceptibility to a number of infectious diseases is strongly associated with the major histocompatibility ( B ) complex. Nucleotide sequence data have been published for six class I ( B-F ) alleles and for class II ( B-Lβ ) alleles or isotypes from 17 Leghorn haplotypes. It is not known if classical B-L or B-F alleles in broilers are identical, at the sequence level, to any Leghorn alleles. This report describes molecular and immunogenetic characterization of two haplotypes from commercial broiler breeder chickens that were originally identified by serology as a single haplotype, but were differentiated serologically in the present work. The two haplotypes, designated B A4 and B A4variant, shared identical B-G restriction fragment length polymorphism patterns, but differed in one B-Lβ fragment that cosegregated with the serological B haplotype. Furthermore, the nucleotide sequences of the highly variable exons of an expressed B-LβII family gene and B-F gene from the two haplotypes were markedly different from each other. Both the B-LβII family and B-F gene sequences from the B A4 haplotype were identical to the sequences obtained from the reference B 21 haplotype in Leghorns; however, in the B A4 haplotype the B-Lβ 21 and B-F 21 alleles were in linkage with B-G alleles that were not G 21. The nucleotide sequences from B A4variant were unique among the reported chicken B-LβII family and B-F alleles.  相似文献   

6.
Three new MHC haplotypes in broiler breeder chickens   总被引:7,自引:0,他引:7  
Six distinct serotypes of the chicken B blood group system (which encodes the major histocompatibility complex) were identified in a commercial broiler breeder line (Line C). The B serotypes were compared by B-G restriction fragment length polymorphism (RFLP) analysis, allele-specific PCR typing test for B-LBII family genes and nucleotide sequence analysis of expressed B-F and B-LBII family genes. The results indicated the existence of seven distinct B haplotypes. Nucleotide sequence analysis demonstrated that three of the Line C haplotypes encode new B-F and B-LB alleles.  相似文献   

7.
Seven serologically defined chicken haplotypes have been analysed by restriction fragment length polymorphism (RFLP) with chicken cDNA probes specific for MHC class I and II. The results demonstrate an excellent correlation between the observed RFLP banding patterns in the investigated haplotypes and the serological B-typing. In future, RFLP analysis in addition to serological B-typing may sharpen the tools in the search for recombinant chromosomes separating B-F and B-L.  相似文献   

8.
A monoclonal antibody directed against the erythrocytic B-G antigens of the major histocompatibility complex (MHC) of the chicken, an antiserum raised against purified erythrocytic B-G protein, and a cDNA probe from the BeckmanB-G subregion were used to look for evidence of the expression ofB-G genes in tissues other than blood. Evidence has been found in northern hybridizations, in immunoblots, and in immunolabeled cryosections for the presence of B-G-like antigens in the duodenal and caecal epithelia. Additional B-G-like molecules may be expressed in the liver as well. The BG-like molecules in these tissues appear larger and somewhat more heterogeneous than the B-G antigens expressed on erythrocytes. Further characterization of these newly recognized B-G-like molecules may help to define a function for the enigmatic B-G antigens of the MHC. al. 1977; Miller et al. 1982, 1984; Salomonsen et al. 1987; Kline et al. 1988), and in the multiplicity of B-G restriction fragment patterns found in genomic DNA from different haplotypes (Goto et al. 1988; Miller et al. 1988; Chaussé et al. 1989). The B-G antigens have contributed, together with the B-F (class I) and B-L (class II) antigens, to the definition of over 27 B system haplotypes in experimental flocks (Briles et al. 1982). Yet the function of the B-G antigens remains entirely unknown. No mammalian counterparts have been identified, although the possibility remains that there may be similar antigens among the blood group systems of mammals. In an effort to define a function of the B-G antigens, a recently cloned B-G sequence (Miller et al. 1988; Goto et al. 1988) and antibodies to the B-G polypeptides (Miller et al. 1982, 1984) were used to examine other tissues for evidence of B-G expression.  相似文献   

9.
The B-G antigens of the chicken major histocompatibility complex (MHC) have been analyzed by high resolution two-dimensional (2-D) gel electrophoresis. Monoclonal antibodies recognizing a widely shared B-G determinant were used for immunoprecipitating the B-G antigens from radioiodinated, detergent-solubilized erythrocyte membrane preparations. The B-G antigens produce a variety of patterns on 2-D gels. The number of polypeptides within a B-G pattern varies among haplotypes from single polypeptide arrays showing slight microheterogeneity to complex patterns which contain as many as four or five polypeptide arrays differing in relative mobility and isoelectric point. Many of the patterns, but not all, include a polypeptide of Mr =48 kd focusing near pH 6.9. At present it is not understood whether the multiple polypeptides within some B-G patterns represent the expression of multiple B-G genes or whether they are the result of modifications of single gene products during biosynthetic processing. 2-D gel analyses were also used to confirm the assignment of the same B-G haplotype in several different inbred flocks and the fate of the B-G antigens in two B system recombinant haplotypes. The 2-D gel patterns of these highly polymorphic antigens provide evidence for a complexity of the B-G locus not previously demonstrated. This technique may serve to define more objectively the diverse chicken MHC haplotypes which are now recognized and characterized only by serological techniques using alloantisera and monoclonal antibodies with varying cross-reactivities.  相似文献   

10.
The major histocompatibility complex (MHC) sequences of three B21-like haplotypes deriving from very different origins including the Red Jungle Fowl Gallus Gallus gallus were compared with the MHC sequences of the standard B21 haplotype from Scandinavian White Leghorn Gallus domesticus. The present analysis reveals two cDNA sequences for B-F and two cDNA sequences for B-LB for every B21-like haplotype, including B21 itself. Contrary to expectation, no sequence polymorphism in the antigen-binding domains of the MHC genes, between the investigated haplotypes, was found. The relative level of MHC class I molecules on the surface of leukocytes measured by flow cytometry was also analysed and found to be low in Marek's Disease (MD)-resistant B haplotypes (B21 and B21-like) and high in MD-susceptible B haplotypes (B15 and B19). However, in heterozygous (resistant/susceptible) animals, the relative level was almost as high as in susceptible haplotypes.  相似文献   

11.
A genomic library was constructed from sperm DNA from an individual of the inbred chicken line G-B2, MHC haplotype B6. The library was screened with a chicken class II probe (beta 2 exon specific) and three MHC class II beta chain genomic clones were isolated. The restriction maps of the three clones showed that each of the three clones was unique. The position of the beta chain sequence was located in each of the three genomic clones by Southern blot hybridization. Subclones containing the beta chain gene were produced from each of the genomic clones and the orientation of the leader peptide, beta 1, beta 2, transmembrane, and cytoplasmic exons was determined by Southern blot hybridization and nucleotide sequencing. The complete nucleotide sequence of two of the three subclones was determined. Comparison of the nucleotide and predicted amino acid sequences of the two subclones with other class II beta chain sequences showed that the B6 chicken beta chain genes are evolutionarily related to the class II beta chain genes from chickens of other MHC haplotypes, and to class II beta chain genes from other species. Analysis of Southern blots of B6 chicken DNA, as well as the isolation of the three beta chain genes, suggests that chickens of the B6 haplotype possess at least three MHC class II beta chain genes.  相似文献   

12.
The B-G antigens are highly polymorphic antigens encoded by genes located within the major histocompatibility complex (MHC) of the chicken, the B system. The B-G antigens of the chicken MHC are found only on erythrocytes and correspond to neither MHC class I nor class II antigens. Several clones were selected from a gt11 erythroid cell expression library by means of rabbit antisera prepared against a purified, denatured B-G antigen. One clone chosen for further study, bg28, was confirmed as a B-G subregion cDNA clone by the results obtained through using it as a nucleic acid hybridization probe. In Northern hybridizations bg28 anneals specifically with erythroid cell mRNA. In Southern blot analyses the bg28 clone could be assigned to the B system-bearing microchromosome of the chicken karyotype on the basis of its hybridization to DNA from birds disomic, trisomic, and tetrasomic for this microchromosome. The cDNA clone was further mapped to the B-G subregion on the basis of its pattern of hybridization with DNA from birds of known B region recombinant haplotypes. Southern blot analyses of the hybridization of bg28 with genomic DNA from birds of known haplotypes strongly suggest that the B-G antigens are encoded by a highly polymorphic multigene family.  相似文献   

13.
In search for recombinants within the chicken major histocompatibility B complex, 1155 animals from crosses between the congenic lines CB (B12) and CC (B4) were tested with alloantibodies and monoclonal antibodies for the B-F (class I), B-L (class II), and B-G (class IV) antigens and by mixed lymphocyte reaction. The absence of detectable recombination was confirmed by restriction fragment length polymorphism analysis with B-L and B-F probes. Together with previous reports, this indicates that the distance between the B-F and B-L loci is below 0.01 centimorgan.  相似文献   

14.
The major histocompatibility complex (MHC) region was examined as a set of candidate genes for association between DNA markers and antibody response. Intercross F2 families of chickens were generated from a cross between high (HC) and low (LC) Escherichia coli i antibody lines. Restriction fragment length polymorphism (RFLP) analysis was conducted by using three MHC-related cDNA probes: chicken MHC class IV ( B-G ), chicken MHC class I ( B-F ), and human MHC-linked Tap2 . Association between RFLP bands and three antibody response traits ( E. coli , sheep red blood cells and Newcastle disease virus) were determined by two methods: by statistically analyzing each band separately and also by analyzing all bands obtained from the three probes by using multiple regression analysis to account for the multiple comparisons. The MHC class IV probe was the highest in polymorphisms but had the lowest number of bands associated with antibody response. The MHC class I probe yielded 15 polymorphic bands of which four exhibited association with antibody response traits. The Tap2 probe yielded 20 different RFLP bands of which five were associated with antibody production. Some Tap2 bands were associated with multiple antibody response traits. The multiband analysis of the three probes' bands revealed more significant effects than the analysis of each band separately. This study illustrates the efficacy of using multiple MHC region probes as candidate markers for quantitative trait loci (QTLs) controlling antibody response in chickens.  相似文献   

15.
By cross-hybridization in low stringency conditions, using a probe derived from an HLA-DQ beta cDNA clone, we have isolated several chicken genomic DNA clones. These clones were mapped to the major histocompatibility complex (MHC) of the chick (B complex) by virtue of their ability to detect restriction enzyme length polymorphisms between congenic lines of chicken. Evidence was obtained for the presence of at least three B-L beta genes in the chicken genome. The B-L beta genes are transcribed specifically in tissues containing cells of the B lymphocyte and myeloid lineages and expressing the B-L antigens. Exons encoding the beta 1, beta 2 and transmembrane domains of a B-L beta chain have been identified with 63, 66 and 62% similarity with the HLA-DQ beta sequence. This first isolation of an MHC class II gene outside of the mammalian class provides insight into the evolution of MHC genes based on the comparison of avian and mammalian class II beta chain amino acid and nucleotide sequences.  相似文献   

16.
In contrast to the major histocompatibility complex (MHC) of well-studied mammals such as humans and mice, the particular haplotype of the B-F/B-L region of the chicken B locus determines life and death in response to certain infectious pathogens as well as to certain vaccines. We found that the B-F/B-L region is much smaller and simpler than the typical mammalian MHC, with an important difference being the expression of a single class I gene at a high level of RNA and protein. The peptide-binding specificity of this dominantly expressed class I molecule in different haplotypes correlates with resistance to tumours caused by Rous sarcoma virus, while the cell-surface expression level correlates with susceptibility to tumours caused by Marek's disease virus. A similar story is developing with class II beta genes and response to killed viral vaccines. This apparently suicidal strategy of single dominantly expressed class I and class II molecules may be due to coevolution between genes within the compact chicken MHC.  相似文献   

17.
The MHC haplotypes of the chicken   总被引:4,自引:0,他引:4  
The major histocompatibility complex (MHC) of Gallus gallus is the B complex of which three classes of cell-membrane antigens have been clearly defined by serological, histogenetic, and biochemical methods. Two of these classes are homologous to classes I and II of mammals (B-F and B-L, respectively), while the third (B-G) is a differentiation antigen of the erythroid cell-line; the mammalian homologue of this class is still undefined. The B haplotypes comprise at least one gene of each class that displays linkage disequilibrium of a remarkable strength. The present work is the first systematic comparison by serological and histogenetic methods of the allelic products (allomorphs) of 15 haplotypes, including all of the 11 that were accepted as standard B haplotypes at the recent international Workshop on the chicken MHC in Innsbruck, Austria. The analysis has revealed many similarities, but only four pairs of probable identities: G2 and G12, F4 and F13, L4 and L13, L12 and L19. It appears therefore that the B-G locus is comparable in its degree of polymorphism to the class I (B-F) locus. The standard haplotypes are almost all of White Leghorn derivation, and preliminary typings of other breeds of chickens, and of wild chickens, indicate the existence of a much wider spectrum of allomorphs.  相似文献   

18.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

19.
20.
The major histocompatibility complex (MHC) is a group of genetic loci coding for haplotypes that have been associated with fitness traits in mammals and birds. Such associations suggest that MHC diversity may be an indicator of overall genetic fitness of endangered or threatened species. The MHC haplotypes of a captive population of 12 families of northern bobwhites (Colinus virginianus) were identified using a combination of immunogenetic and molecular techniques. Alloantisera were produced within families of northern bobwhites and were then tested for differential agglutination of erythrocytes of all members of each family. The pattern of reactions determined from testing these alloantisera identified a single genetic system of alloantigens in the northern bobwhites, resulting in the assignment of a tentative genotype to each individual within the quail families. Restriction fragment patterns of the DNA of each bird were determined using the chicken MHC B‐G cDNA probe bg11. The concordance between the restriction fragment patterns and the alloantisera reactions showed that the alloantisera had identified the MHC of the northern bobwhite and supported the tentative genotype assignments, identifying at least 12 northern bobwhite MHC haplotypes. Eighteen northern bobwhite alloantisera were then used to detect a minimum of 17 masked bobwhite MHC haplotypes. Subsequent restriction fragment pattern analyses using cDNA probes for chicken MHC genes were in agreement with agglutination patterns displayed by the antisera, showing that the immunogenetically identified alloantigen system constituted the MHC of the masked bobwhite. These data demonstrate that a non‐endangered species may be used to provide antisera for differentiating MHC haplotypes in a closely related endangered species, thus providing a practical basis for long‐range monitoring of MHC haplotypes of birds surviving in their native habitats. Zoo Biol 18:279–294, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号