首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尖孢镰孢菌古巴专化型(Fusarium oxysporum f.sp.cubense)是香蕉枯萎病的病原菌,该菌是一种土壤习居菌,了解香蕉根区土壤中真菌多样性及镰孢菌属(Fusarium)真菌所占比例,对如何减少土壤中的病原菌、预防香蕉枯萎病的发生有重要的指导意义。该文通过采集不同宿根年限的香蕉健康植株和枯萎病植株的根区土壤,利用高通量测序技术测定土壤样品中的真菌种群。结果表明:(1)同一宿根年限的香蕉植株中,健康植株根区土壤中所获的reads及OTUs数量均高于枯萎病植株,说明健康植株根区土壤的真菌多样性丰富于枯萎病植株。(2)除了一年生香蕉枯萎病植株以担子菌门(Basidiomycota)为主外,其他土壤样品中均以子囊菌门(Ascomycota)为主,其中的丛赤壳科最高相对丰度来自三年生健康植株的根区土壤(26.02%),其次是五年生的枯萎病植株根区土壤(15.56%)。(3)在丛赤壳科中,镰孢菌属在三年生健康植株土壤中的相对丰度最高(2.54%),在其他样品中的相对丰度在0.1%~0.65%之间;在镰孢菌属中,腐皮镰孢菌(Fusarium solani)的相对丰度(0~1.59%之间)高于尖孢镰孢菌(F.oxysporum),尖孢镰孢菌仅占很小的比例(相对丰度0~0.08%之间)。可见,在不同香蕉植株的根区土壤中,健康植株的根区土壤真菌多样性高于枯萎病植株,无论是健康植株还是枯萎病植株的根区土壤中,作为香蕉枯萎病病原菌的镰孢菌属或尖孢镰孢菌的群体均不占主导地位。  相似文献   

2.
Treatments with conidia of Penicillium oxalicum produced in a solid‐state fermentation system were applied at similar densities (6 × 106 spores/g seedbed substrate) to tomato seedbeds in water suspensions (T1: 5 days before sowing, or T2: 7 days before transplanting; 15 days after sowing), or in mixture with the production substrate (T3: 7 days before transplanting; 15 days after sowing). Treatments T2 and T3 significantly (P = 0.05) reduced fusarium wilt of tomato in both greenhouse (artificial inoculation) (33 and 28%, respectively) and field conditions (naturally infested soils) (51 and 72%, respectively), while treatment T1 was efficient only in greenhouse (52%). Verticillium wilt disease reduction was obtained with T3 in two field experiments (56 and 46%, respectively), while T1 and T2 reduced disease only in one field experiment (52% for both T1 and T2). Treatment with conidia of P. oxalicum plus fermentation substrate (T3) resulted in better establishment of a stable and effective population of P. oxalicum in seedbed soil and rhizosphere providing populations of approx. 107 CFU/g soil before transplanting. Results indicate that it will be necessary to apply P. oxalicum at a rate of approx. 106–107 CFU/g in seedbed substrate and rhizosphere before transplanting for effective control of fusarium and verticillium wilt of tomato, and that formulation of P. oxalicum has a substantial influence on its efficacy.  相似文献   

3.
Resistance to fusarium wilt in peas (Pisumsativum L.) caused by Fusarium oxysporum Schlect. f. sp. pisi race 1 (van Hall) Snyd. & Hans. is conferred by a single dominant gene, Fw. The gene was located in the pea genome by analyzing progenies from crosses involving genetic markers across all pea linkage groups. Phenotyping of the progenies for reaction to race 1 of the fusarium wilt pathogen was determined by field screening in a "wilt-sick" plot in Pullman, Washington. Fw was shown to be located on linkage group III, about 13 map units from Lap-1 and b and 14 map units from Td. The relatively large distances between these markers and Fw precludes the use of the linked markers in marker-assisted selection for wilt resistance. Additional markers in this region of the pea genome will be required if marker-assisted selection for Fw is to be successful.  相似文献   

4.
In a growth chamber at 25 C, the fungal antagonist Gliocladium virens colonized tap roots and secondary roots of cotton in non-sterile soil after seed treatment with preparations of G. virens. Colonization of tap roots by G. virens increased over time, and decreased with root depth. Seed treatments with G. virens strains G-4 and G-6 and with Bacillus subtilis strains GB03 and GB07 reduced the colonization of tap roots and secondary roots of cotton seedlings by Fusarium spp. Under greenhouse conditions, the same seed treatments suppressed the incidence and severity of fusarium wilt of cotton in soil infested with Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita. Gliotoxin, produced by 'Q-group' strains of G. virens, inhibited F. oxysporum f. sp. vasinfectum in vitro. The seed treatments with G. virens strain G-6 and B. subtilis strains GB03 and GB07 did not affect the reproduction of root-knot nematodes. The results of this study may help to explain why the treatment of cotton seed with biocontrol agents often results in more vigorous and higher yielding plants, and indicate that there is potential for using G. virens and B. subtilis as seed treatments to control fusarium wilt of cotton.  相似文献   

5.
Ditchweed ( Cannabis sativa L.) is widely distributed in the Chu Valley of southeast Kazakhstan and is difficult to control using conventional chemical or mechanical control. Thus, plant pathogens were investigated as potential biocontrol agents. Fusarium oxysporum was isolated from symptomatic C. sativa plants from this area. Twenty-five of the isolated strains of F. oxysporum were pathogenic and host-specific to C. sativa in greenhouse studies. These strains of F. oxysporum f. sp. cannabis were further evaluated as mycoherbicides for control of ditchweed in natural field infestations. Twelve strains showed field control of C. sativa , and the most virulent strain elicited wilt symptoms within 2 weeks of inoculation of field plants. Three different mycoherbicide formulations were evaluated. A birch sawdust formulation was the most effective carrier in the field. Food based formulations were heavily predated by birds, rodents and insects.  相似文献   

6.
采用稀释涂布平板计数法,研究了石灰碳铵及碳铵熏蒸对黄瓜和西瓜连作土壤尖孢镰刀菌数量的影响,以及熏蒸后施用生物有机肥对黄瓜和西瓜枯萎病的防控效果及植株生长的影响.结果表明:与对照相比,石灰碳铵及碳铵熏蒸后,连作土壤中黄瓜尖孢镰刀菌的数量分别下降95.4%及71.4%,西瓜尖孢镰刀菌的数量分别下降87.2%及64.2%;多因素方差分析表明,熏蒸、施用有机肥及作物种类均对土壤中尖孢菌数量、枯萎病发病率、防控率及生物量有显著影响;与未熏蒸施用普通有机肥对照相比,石灰碳铵熏蒸后施用生物有机肥能显著减少后茬黄瓜或西瓜土壤中尖孢镰刀菌的数量并显著降低枯萎病发病率,防控率高达91.9%及92.5%,同时显著增加了植株的株高、茎粗、SPAD值及干质量.表明石灰碳铵熏蒸及施用生物有机肥能够降低土壤中尖孢镰刀菌数量,有效防控黄瓜和西瓜枯萎病的发生并促进其植株生长.  相似文献   

7.
刘增亮  汪茜  宋娟  周双云  车江旅  陈廷速 《菌物学报》2019,38(11):1958-1964
为筛选得到优良植物病害生防菌,对广西生姜Zingiber officinale种植区健康生姜根系和叶片中的共生真菌进行了组织分离,以生姜茎腐病菌群结腐霉Pythium myriotylum和香蕉枯萎病菌尖孢镰刀菌古巴专化型4号生理小种Fusarium oxysporum f. sp. cubense race 4为指示菌,通过平板对峙培养法和发酵液菌落直径法试验进行筛选评价,并结合形态学观察及ITS序列分析对筛选出的生防效果最好的共生真菌进行了鉴定。结果表明,从生姜植株共分离得到34株共生真菌,其中根系分离22株,叶片分离12株;对峙培养发现有6株共生真菌对生姜茎腐病菌和香蕉枯萎病菌均有抑制作用;其中菌株SBM-11拮抗作用最强,对生姜茎腐病菌抑制率达到93%,对香蕉枯萎病菌抑制率达到82%;SBM-11的发酵液对生姜茎腐病菌和香蕉枯萎病菌抑制率分别为82%、73%,与其他菌株发酵液抑制效果相比差异明显;结合形态和分子鉴定结果表明SBM-11菌株为绿色木霉Trichoderma viride,极具生防潜力。  相似文献   

8.
对黄瓜枯萎病具防效的海洋源芽孢杆菌Y3F的鉴定   总被引:1,自引:0,他引:1  
陈香  唐彤彤  孙星  刘勤 《微生物学通报》2017,44(10):2370-2379
【目的】对一株从连云港海域海藻样品中获得的拮抗细菌Y3F进行鉴定并且研究菌株Y3F对黄瓜土传枯萎病害的控制效果。【方法】对Y3F进行形态、生理生化特征和16S r RNA基因序列分析,采用平板对峙法测定菌株Y3F的活菌液和无菌滤液的抑菌活性,利用盆栽试验测定Y3F对黄瓜枯萎病害的防治效果。【结果】初步鉴定该菌属于蜡样芽孢杆菌(Bacillus cereus),用2216E培养基振荡培养24 h的Y3F的无菌滤液对黄瓜尖孢镰刀菌有较强的抑菌活性,表明菌株能分泌抑制病原菌生长的活性物质。盆栽试验表明,种植30 d后,浸种和灌根同时处理(JG)的防治效果达到50.46%,对黄瓜枯萎病害有明显的控制效果,显著提高黄瓜植株生物量,显著降低黄瓜根际土的真菌和尖孢镰刀菌数量,增加根际的细菌和放线菌数量。【结论】菌株Y3F能有效防治黄瓜枯萎病害,改善根际微生物结构,具有进一步开发应用的前景。  相似文献   

9.
AIMS: The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. METHODS AND RESULTS: The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. CONCLUSIONS: Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. SIGNIFICANCE AND IMPACT OF THE STUDY: Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.  相似文献   

10.
甘薯兼抗薯瘟病和蔓割病种质筛选鉴定   总被引:2,自引:0,他引:2  
用甘薯瘟2个致病型菌株对557份甘薯品种(系)分菌系做盆苗和田间接种鉴定,并用蔓割病菌接种鉴定.结果表明,筛选出兼抗薯瘟病2个菌系的品种(系)31份,兼抗甘薯瘟和蔓割病的品种(系)有16份,其中泉薯860、泉薯854、金山93、榕选416、金山908、广薯88-70和泉薯853等7份与我省主栽抗病品种湘薯75-55(CK)相比,具有类似的双抗性能力,而其抗瘟能力更强.福薯87、林泗2号、金山57和湛93-16等4份对照品种只抗单个病害或兼抗单个菌系.  相似文献   

11.
Johnson EL  Kim SH  Emche SD 《BioTechniques》2003,35(2):310-4, 316
Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.  相似文献   

12.
Alcaligenes sp. strain MFA1 inhibits microconidial germination and germination-tube elongation of Fusarium oxysporum f.sp. dianthi and reduces the severity of fusarium wilt of carnation, presumably as a result of its production of a siderophore (G.Y. Yuen and M.N. Schroth. 1986. Phytopathology, 76:171-176). Derivative strains of MFA1, deficient in antagonism against F. oxysporum and in iron-limited growth, were obtained by Tn5 mutagenesis. The presence of a single Tn5 insertion in the genomic DNA of each derivative strain was detected by Southern analysis. Marker-exchange mutagenesis of strain MFA1 with DNA fragments, containing Tn5 and flanking sequences cloned from representative mutants, confirmed the association of single Tn5 insertions with the loss of antifungal activity and iron-independent growth of MFA1. These results are consistent with the involvement of siderophore biosynthesis by MFA1 in the inhibition of F. oxysporum.  相似文献   

13.
RISHBETH  J. 《Annals of botany》1955,19(3):293-328
The banana wilt pathogen Fusarium oxysporum f. cubense can bedetected in soil by a suitable host test. It often enters thehost through living rootlets, from which it passes into thevascular strand of the main root and thence into the rhizome;apparently infection does not occur through dead roots. The spread of wilt through plantations was studied by takingrecords at 2-monthly intervals: new cases arise both spontaneouslyand in association with pre-existing ones. Flooding is probablyimportant in local dispersal of the pathogen, as it is in long-rangedispersal. The relative importance of some other modes of dispersalis discussed. The soil population of F. oxysporum f. cubense increases considerablywhen wilted bananas collapse and declines shortly after theirremoval. If the site is replanted with a banana variety resistantto wilt the pathogen can thereafter often be detected in thesoil; in the absence of bananas, however, it cannot be detectedby any test after about 10 years, although its continued survivalis well established by many field observations on the incidenceof banana wilt. Little is known about its mode of survival insoil.  相似文献   

14.
Root rot severity of asparagus plants grown in sterilized field soil inoculated with Fusarium oxysporum f . sp . asparagi (Foa) was reduced by more than 50% when the soil was precolo nized by each of 13 non - pathogenic (np) isolates of F. oxysporum originating from asparagus roots or field soils . In a greenhouse experiment , application of six np isolates to naturally infested field soil was followed by a 23 - 49% decrease of disease severity , depending on the isolate . One of them , Fo47 originating from Fusarium suppressive soil in France , was applied to field plots infested with Foa . Foa root rot was not suppressed in asparagus plants grown for 1 year in these plots . Pathogenic and np isolates extensively colonized the root surface and isolates of both types infected the roots of asparagus plants grown in sterilized field soil , with significant differences among the np isolates . Inoculation of sterilized field soil with np isolates reduced germination of Foa chlamydospores by 43 - 64% depending on the isolate used . It is concluded that np isolates of F. oxysporum can suppress asparagus root rot caused by Foa in naturally infested field soil . The differences for root colonization capacity among the np isolates imply that selection for this trait might reveal isolates that perform better under field conditions .  相似文献   

15.
产紫篮状菌的生防潜力及其对土壤微生物群落的调控   总被引:1,自引:0,他引:1  
产紫篮状菌Q2菌株是一株分离自健康黄瓜根际的有益微生物。本文通过平皿对峙培养、温室盆栽试验和田间试验评估了Q2菌株对4种土传病害的生防潜力及其与土壤熏蒸技术结合对苦瓜枯萎病的防治效果,并通过平皿稀释培养法、高通量技术和定量PCR技术对其防治苦瓜枯萎病及调控土壤微生物群落的机制进行研究。结果表明: 在温室条件下,Q2菌株对苦瓜枯萎病、烟草黑胫病、烟草根黑腐病和马铃薯茎基腐病具有明显的预防效果,对烟草黑胫病和苦瓜枯萎病防治效果分别达到75.3%和63.4%。在苦瓜枯萎病人工病圃中,单一产紫篮状菌Q2制剂对苦瓜枯萎病的防治效果为51.0%,其结合威百亩土壤熏蒸技术在相同试验条件下对枯萎病的防治效果则达到80%以上。威百亩土壤熏蒸显著降低了土壤中苦瓜枯萎病病原菌即尖镰孢菌的丰度,而Q2菌株有效地抑制了尖镰孢菌数量的恢复趋势。施用Q2菌株显著富集了土壤中的青霉菌、芽孢杆菌和Gaiella等有益微生物,抑制了尖镰孢菌的恢复。土壤熏蒸后,施用产紫篮状菌Q2菌株有助于土壤有益微生物菌群的形成,从而抑制尖镰孢菌,实现对苦瓜枯萎病的防治。  相似文献   

16.
Pseudomonas aeruginosa PNA1, an isolate from chickpea rhizosphere in India, protected pigeonpea and chickpea plants from fusarium wilt disease, which is caused by Fusarium oxysporum f.sp. ciceris and Fusarium udum. Inoculation with strain PNA1 significantly reduced the incidence of fusarium wilt in pigeonpea and chickpea on both susceptible and moderately tolerant genotypes. However, strain PNA1 protected the plants from fusarium wilt until maturity only in moderately tolerant genotypes of pigeonpea and chickpea. Root colonization of pigeonpea and chickpea, which was measured using a lacZ-marked strain of PNA1, showed tenfold lower root colonization of susceptible genotypes than that of moderately tolerant genotypes, indicating that this plant-bacteria interaction could be important for disease suppression in this plant. Strain PNA1 produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychlororaphin, in vitro. Its Tn5 mutants (FM29 and FM13), which were deficient in phenazine production, caused a reduction or loss of wilt disease suppression in vivo. Hence, phenazine production by PNA1 also contributed to the biocontrol of fusarium wilt diseases in pigeonpea and chickpea.  相似文献   

17.
Summary Thirty two bacteria antagonistic to a number of phytopathogenic fungi were isolated from soil samples. One bacterial strain, designated as M 51, appeared to be particularly active towardsF. oxysporum f. sp.dianthii, in vitro andin vivo and it was inhibitoryin vitro to three otherFusarium spp. used. Tests to find if there was protection against fusarium wilt were carried out by three different methods of inoculation of the cuttings: a) dipping of cuttings for ten minutes in bacterial suspension; b) spraying of suspension on perlite where the rooted cuttings were planted; c) spraying the greenhouse bench rooting boxes, where the non-rooted cuttings were planted, with bacterial suspension. Following this all the cuttings were transplanted into soil naturally highly infested withFusarium oxysporum f. sp.dianthii (3000 units/g). Good protection against fusarium wilt was obtained for cuttings inoculated by method (b). However protection decreased gradually about 60 days after they were transplanted; both control and inoculated cuttings showed a comparable mortality rate. Method of inoculation and the development of the protective effect are discussed.  相似文献   

18.
Plant Molecular Biology Reporter - Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici, a hemibiotrophic filamentous fungal pathogen is one of the important diseases of tomato. Recently,...  相似文献   

19.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia, to evaluate the potential of Brassica carinata cultivars, namely Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The effect of B. carinata (Ethiopian mustard) cultivars Holleta-1, S-67 and Yellow Dodola as green manure and Holleta-1 as dried plant residue on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) was studied. Six rates of green manure and dried plant residue (0, 20, 40, 60, 80 and 100 g) each per kg of pathogen-infested soil were used in the experiments. Infested soil without B. carinata cultivars amendment as a control and susceptible check variety JG-62 without amendment was used in the experiments. In the experiments, the treatments were arranged in randomised complete block design in three replications and repeated twice. Data on seedling emergence, wilt incidence, fresh weight and dry weight were collected. The amendments of infested soil with B. carinata cultivars green manure and dried plant residue reduced the incidence of chickpea fusarium wilt. The incorporation of the green manure Holleta-1, S-67 and Yellow Dodola at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However, the incorporation of Yellow Dodola at 80 and 100 g green manure per kg of infested soil were the best combination in reducing significantly wilt incidence. The application of the dried plant residue at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However when applied dried plant residue at 60, 80 and 100 g green manure per kg of infested soil were better in reducing wilt incidence as compared to 20 and 40 g/kg of infested soil. The three cultivars green manure incorporated at different level of doses affected the influence of fusarium wilt on the fresh and dry weight respectively. The use of Holleta-1 green manure at 20–100 g/kg of infested soil significantly reduced disease incidence in the range of 20.0–33.3%. Green manure amendment S-67 significantly reduced disease incidence in the range of 20.0–46.6%. Yellow Dodola reduce disease incidence with 26.7–60%. The dried plant residue incorporated at different level influence fusarium wilt. The application of Holleta-1 dried plant residue at 20–100 g/kg of infested soil reduced disease incidence in the range 20.0–26.7%. The results imply the potential of using B. carinata green manure and dried plant residue as cultural management components in chickpea fusarium wilt disease management.  相似文献   

20.
研究不同氮肥用量对蚕豆根际微生物功能多样性的影响及其与蚕豆枯萎病发生的关系.通过田间小区试验,采用Biolog微平板分析法研究了4个施氮水平N0(0 kg·hm-2)、N1(56.25 kg·hm-2)、N2(112.5 kg·hm-2)和N3(168.75 kg·hm-2)对蚕豆枯萎病危害和根际微生物代谢功能多样性的影响.结果表明: 施氮(N1、N2、N3)处理显著降低了蚕豆枯萎病的病情指数和根际镰刀菌的数量,显著增加了蚕豆根际的细菌、放线菌数量、细菌/真菌和放线菌/真菌.其中N2处理蚕豆枯萎病病情指数和镰刀菌数量最低,而细菌、放线菌数量、细菌/真菌和放线菌/真菌最高.与N0处理相比,N1、N2、N3处理均提高了根际微生物群落碳源利用率(AWCD),但对6类碳源的利用存在一定的差异.不同施氮水平下根际微生物群落对糖类、羧酸类和氨基酸类碳源利用程度较高.主成分分析表明,施氮明显改变了蚕豆根际微生物群落结构,糖类、羧酸类和氨基酸类碳源是区分施氮导致土壤微生物群落变化的敏感碳源.施氮抑制了根际微生物对部分糖类和羧酸类碳源的利用,而提高了对氨基酸和酚酸类碳源的利用,这可能是施氮减轻蚕豆枯萎病危害的重要原因之一.适量施氮能增加根际细菌、放线菌数量,改变微生物代谢功能,降低病原菌数量,是抑制蚕豆枯萎病发生的有效措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号