首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolic and developmental depression commonly observed during natural states of dormancy, such as diapause and quiescence, is typically accompanied by an increase in the intracellular ratio of AMP to ATP. We investigated the impact of artificially increasing the AMP-to-ATP ratio in mouse macrophages. Evidence is presented here that the P2X7 receptor channel can be used as an effective means to load cells with membrane-impermeable compounds. Intracellular loading of adenosine-5'-O-thiomonophosphate (AMPS), a nonhydrolyzable analog of 5'-AMP and potent activator of AMP-activated protein kinase, significantly depresses metabolism and proliferation of macrophages. The intracellular effective AMP-to-ATP ratio obtained (the sum of AMPS plus endogenous 5'-AMP) was 0.073, well above that reported to activate AMP-activated protein kinase in vitro. Optimizing both the conditions under which the P2X7 receptor channel is opened and the duration of opening facilitates high analog uptake and approximately 98% survivorship. An advantage to AMPS is its minimal impact on other components of the nucleotide pool, most notably the unchanged concentration of ADP. An alternative way to shift the effective AMP-to-ATP ratio is by incubation with the membrane-permeable compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), which is phosphorylated intracellularly to form the 5'-AMP analog ZMP. Despite a rapid intracellular accumulation of AICAR, conversion to ZMP was slow and inefficient. Furthermore, AICAR incubation increased cellular ADP, and, although cell proliferation was depressed, the overall cellular energy flow was unchanged. The rapid action of AMPS avoids upregulation of compensatory metabolic pathways and may provide a viable approach for promoting cell stasis.  相似文献   

2.
AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.  相似文献   

3.
Structural insight into AMPK regulation: ADP comes into play   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK), a sensor of cellular energy status found in all eukaryotes, responds to changes in intracellular adenosine nucleotide levels resulting from metabolic stresses. Here we describe crystal structures of a heterotrimeric regulatory core fragment from Schizosaccharomyces pombe AMPK in complex with ADP, ADP/AMP, ADP/ATP, and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranotide (AICAR phosphate, or ZMP), a well-characterized AMPK activator. Prior crystallographic studies had revealed a single site in the gamma subunit that binds either ATP or AMP within Bateman domain B. Here we show that ZMP binds at this site, mimicking the binding of AMP. An analogous site in Bateman domain A selectively accommodates ADP, which binds in a distinct manner that also involves direct ligation to elements from the beta subunit. These observations suggest a possible role for ADP in regulating AMPK response to changes in cellular energy status.  相似文献   

4.
AMP-activated protein kinase (AMPK) is a cellular energy sensor whose activity responds to AMP concentration ([AMP]). An agent that activates AMPK in cells is 5-aminoimidazole-4-carboxamide-1-riboside (AICA-riboside). Phosphorylated AICA-riboside or AICA-ribotide (ZMP) is an AMP analog. It is generally assumed that ZMP accumulation does not alter [AMP]. Additionally, the effect of AICA-riboside on AMPK activity of the heart is uncertain. Two hypotheses were tested in the isolated mouse heart: 1) sufficient ZMP concentration ([ZMP]) forms to increase AMPK activity, and 2) [ZMP] accumulation increases [AMP]. Perfusion of isolated mouse hearts with Krebs-Henseleit buffer containing 0.15-2 mM AICA-riboside concentration resulted in [ZMP] of 2-8 mM. ZMP accumulation reduced phosphocreatine concentration, which increased cytosolic [AMP]. In hearts with [ZMP] less than approximately 3 mM, in vivo AMPK allosteric activity effects of ZMP were observed; AMPK phosphorylation and [AMP] were not increased. With [ZMP] between 3 and 5 mM, in vitro AMPK activity and phosphorylation increased with unchanged [AMP]. This occurred in hearts perfused with 0.25 mM AICA-riboside for 48 min and 0.5 mM AICA-riboside for 24 min. The [ZMP] resulting in 50% AMPK activity (covalent phosphorylation of AMPK) was 4.1 +/- 0.6 mM. Hearts with [ZMP] >5 mM displayed increased [AMP] and AMPK activity that was not different from hearts with similar [AMP] with no [ZMP]; the half-maximal activity of AMP was 5.6 +/- 1.6 microM. Thus, in mouse hearts, AICA-riboside was metabolized to [ZMP] adequately to increase AMPK activity. Higher [ZMP] also increased cytosolic [AMP], which affects AMPK activity.  相似文献   

5.
AMP-activated protein kinase (AMPK) has been proposed to act as a key energy sensor mediating the metabolism of glucose and lipids, and pharmacological activation of AMPK may provide a new strategy for the management of type 2 diabetes. MicroRNAs (miRNAs) are a group of endogenous noncoding RNA that play important roles in many biological processes including energy metabolism. Whether miRNAs mediate AMPK action in regulating metabolic process is not clear. In this study, 0.5 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was added to increase activation of AMPK in 8 week old C57BL/6 mice primary hepatocytes. MiRNA microarray was performed to compare the miRNA expression profiles of hepatocytes treated with or without AICAR. We discovered that 41 miRNAs were significantly altered in AICAR-treated sample (fold change: > 2) compared with untreated control sample. Among them, 19 miRNAs were upregulated. MiRNA targets were predicted by TargetScan. Further bioinformatic analysis indicated that these predicted targets might be mainly involved in pathways of cellular metabolism and tumor pathogenesis. FUNDO analysis suggested that these predicted targets were enriched in cancer, diabetes mellitus, hypertension, obesity and heart failure (P < 0.01). A series of miRNAs could be regulated by the activation of AMPK and might mediate the action of AMPK during metabolic processes and tumor pathogenesis. Predicted target genes discovered in this study and pathway analysis provide new insights into hepatic metabolism and tumor pathogenesis regulated by AMPK signaling and clues to the possible molecular mechanism underlying the effect of AMPK.  相似文献   

6.
A portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion that results in hepatic 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate (ZMP) concentrations of approximately 4 micromol/g liver increases hepatic glycogenolysis and glucose output. ZMP is an AMP analog that mimics the regulatory actions of this nucleotide. The aim of this study was to measure hepatic AMP concentrations in response to increasing energy requirements to test the hypothesis that AMP achieves concentrations during exercise, consistent with a role in stimulation of hepatic glucose metabolism. Male C57BL/6J mice (27.4+/- 0.4 g) were subjected to 35 min of rest [sedentary (SED), n=8], underwent short-term (ST, 35 min) moderate (20 m/min, 5% grade) exercise (n=8), or underwent treadmill exercise under similar conditions but until exhaustion (EXH, n=8). Hepatic AMP concentrations were 0.82+/- 0.05, 1.17+/- 0.11, and 2.52+/- 0.16 micromol/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic energy charge was 0.66+/- 0.01, 0.58+/- 0.02, and 0.33+/- 0.22 in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic glycogen was 11.6+/- 1.0, 8.8+/- 2.2, and 0.0+/- 0.1 mg/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic AMPK (Thr(172)) phosphorylation was 1.00+/- 0.14, 1.96+/- 0.16, and 7.44+/- 0.63 arbitrary units in SED, ST, and EXH mice, respectively (P< 0.05). Thus exercise increases hepatic AMP concentrations. These data suggest that the liver is highly sensitive to metabolic demands, as evidenced by dramatic changes in cellular energy indicators (AMP) and sensors thereof (AMP-activated protein kinase). In conclusion, AMP is sensitively regulated, consistent with it having an important role in hepatic metabolism.  相似文献   

7.
Adjuvant formulations boost humoral responses by acting through several, yet incompletely elucidated pathways. In this study, we show that oligomycin or 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) enhances Ab production when coinjected with T cell-dependent Ags. Oligomycin and AICAR lead to intracellular ATP reduction, suggesting that metabolic stress could be sensed by immune cells and leads to increased humoral responses. AICAR promotes IL-4 and IL-21 by naive Th cells but does not affect dendritic cell activation/maturation in vitro or in vivo. Accordingly, the adjuvant effect of AICAR or oligomycin does not require MyD88 or caspase-1 expression in vivo. Because AICAR is well tolerated in humans, this compound could represent a novel and safe adjuvant promoting humoral responses in vivo with a minimal reactogenicity.  相似文献   

8.
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.  相似文献   

9.
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a phylogenetically conserved serine/threonine protein kinase. AMPK may inhibit cell growth and proliferation and also regulates apoptosis. 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) is a cell-permeable AMPK activator. Activation of AMPK with AICAR has been shown to induce apoptosis of the rat hepatoma cell line FTO2B cells and almost completely inhibited HepG2 cells growth. In this study, a HepG2 cell line, which was transfected with a vector containing human CYP2E1 cDNA (E47 cells), was treated with AICAR. Cell proliferation was blocked, and apoptosis and necrosis were elevated as assessed by cellular morphology, DNA content assay, and lactate dehydrogenase leakage. AICAR treatment significantly increases CYP2E1 activity (20-fold) and expression (5.5-fold) in E47 cells. Iodotubericidin, which inhibits the conversion of AICAR to its activated form AICAR monophosphate, the antioxidants trolox and MnTMPyP, and 4-methylpyrazole, an inhibitor of CYP2E1, all can protect the E47 cells from AICAR-induced necrosis. Production of intracellular reactive oxygen species was increased by AICAR treatment in E47 cells. The cytotoxicity mechanism of AICAR in E47 cells is suggested to include AMPK activation, p53 phosphorylation, p21 expression, overexpression of CYP2E1, and intracellular ROS accumulation.  相似文献   

10.
This study was designed to determine the histological and metabolic effects of the administration of 5'-AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 14 successive days. AICAR treatment caused a significant decrease in the percentage of type IIB fibers and the concomitant increase in the percentage of type IIX fibers in extensor digitorum longus (EDL) muscle. The capillary density and the capillary-to-fiber ratio were not altered by AICAR. AICAR treatment increased the glycolytic and oxidative enzyme activities but not the antioxidant enzyme activities. The AICAR treatment increased the uncoupling protein 3 (UCP3) level in EDL and the peroxisome proliferator-activated receptor-gamma coactivator-1alpha protein level in the soleus and EDL muscles, whereas the myogenin level was not altered by AICAR. These results seem to imply that the chronic activation of AMPK alters such muscle histochemical and metabolic characteristics.  相似文献   

11.
12.
We have previously shown that the adenosine analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), an activator of AMP-activated protein kinase (AMPK), stimulates an increase in AMPK activity and induces meiotic resumption in mouse oocytes [Downs, S.M., Hudson, E.R., Hardie, D.G., 2002. A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes. Dev. Biol, 245, 200-212]. The present study was carried out to better define a causative role for AMPK in oocyte meiotic maturation. When microinjected with a constitutively active AMPK, about 20% of mouse oocytes maintained in meiotic arrest with dibutyryl cAMP (dbcAMP) were stimulated to undergo germinal vesicle breakdown (GVB), while there was no effect of catalytically dead kinase. Western blot analysis revealed that germinal vesicle (GV)-stage oocytes cultured in dbcAMP-containing medium plus AICAR possessed elevated levels of active AMPK, and this was confirmed by AMPK assays using a peptide substrate of AMPK to directly measure AMPK activity. AICAR-induced meiotic resumption and AMPK activation were blocked by compound C or adenine 9-beta-d-arabinofuranoside (araA, a precursor of araATP), both inhibitors of AMPK. Compound C failed to suppress adenosine uptake and phosphorylation, indicating that it did not block AICAR action by preventing its metabolism to the AMP analog, ZMP. 2'-deoxycoformycin (DCF), a potent adenosine deaminase inhibitor, reversed the inhibitory effect of adenosine on oocyte maturation by modulating intracellular AMP levels and activating AMPK. Rosiglitazone, an anti-diabetic agent, stimulated AMPK activation in oocytes and triggered meiotic resumption. In spontaneously maturing oocytes, GVB was preceded by AMPK activation and blocked by compound C. Collectively, these results support the proposition that active AMPK within mouse oocytes provides a potent meiosis-inducing signal in vitro.  相似文献   

13.
AMPK is an AMP-activated protein kinase that plays an important role in regulating cellular energy homeostasis. Metabolic stress, such as heat shock and glucose starvation, causes an energy deficiency in the cell and leads to elevated levels of intracellular AMP. This results in the phosphorylation and activation of AMPK. LKB1, a tumor suppressor, has been identified as an upstream kinase of AMPK. We found that in response to treatment with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), the LKB1 deficient cancer cell line, HeLa, exhibited AMPK-α phosphorylation. This indicates the existence of an LKB1-independent AMPK-α phosphorylation pathway. ATM is a protein that is deficient in the disease ataxia telangiectasia (A-T). We measured the activation of AMPK by AICAR in the normal mouse embryo fibroblast cell line, A29, and the mouse cell line lacking the ATM protein, A38. In A38 cells, the level of AICAR-induced AMPK-α phosphorylation was significantly lower than that found in A29 cells. Furthermore, phosphorylation of AMPK in HeLa and A29 cells was inhibited by an ATM specific inhibitor, KU-55933. Our results demonstrate that AICAR treatment could lead to phosphorylation of AMPK in an ATM-dependent and LKB1-independent manner. Thus, ATM may function as a potential AMPK kinase in response to AICAR treatment.  相似文献   

14.
15.
16.
Activation of AMP-activated protein kinase (AMPK) by exercise and metformin is beneficial for the treatment of type 2 diabetes. We recently found that, in cultured cells, the LKB1 tumor suppressor protein kinase activates AMPK in response to the metformin analog phenformin and the AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have also reported that LKB1 activates 11 other AMPK-related kinases. The activity of LKB1 or the AMPK-related kinases has not previously been studied in a tissue with physiological relevance to diabetes. In this study, we have investigated whether contraction, phenformin, and AICAR influence LKB1 and AMPK-related kinase activity in rat skeletal muscle. Contraction in situ, induced via sciatic nerve stimulation, significantly increased AMPKalpha2 activity and phosphorylation in multiple muscle fiber types without affecting LKB1 activity. Treatment of isolated skeletal muscle with phenformin or AICAR stimulated the phosphorylation and activation of AMPKalpha1 and AMPKalpha2 without altering LKB1 activity. Contraction, phenformin, or AICAR did not significantly increase activities or expression of the AMPK-related kinases QSK, QIK, MARK2/3, and MARK4 in skeletal muscle. The results of this study suggest that muscle contraction, phenformin, or AICAR activates AMPK by a mechanism that does not involve direct activation of LKB1. They also suggest that the effects of excercise, phenformin, and AICAR on metabolic processes in muscle may be mediated through activation of AMPK rather than activation of LKB1 or the AMPK-related kinases.  相似文献   

17.
Extracellular signal-regulated kinase (ERK) is one of the key protein kinases that regulate the growth and proliferation in cardiac fibroblasts (CFs). As an energy sensor of cellular metabolism, AMP-activated protein kinase (AMPK) is found recently to be involved in myocardial remodeling. In this study, we investigated the crosstalk between ERK and AMPK in the growth and proliferation of CFs. In neonatal rat cardiac fibroblasts (NRCFs), we found that serum significantly inhibited basal AMPK phosphorylation between 10 min and 24 h and also partially inhibited AMPK phosphorylation by AMPK activator, 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR). Furthermore, ERK inhibitor could greatly reverse the inhibition of AMPK by serum. Conversely, activation of AMPK by AICAR also showed a significant inhibition of basal and serum-induced ERK phosphorylation but it showed a delayed and steadfast inhibition which appeared after 60 min and lasted until 12 h. Moreover, inhibition of ERK could repress the activation of p70S6K, an important kinase in cardiac proliferation, and AICAR could also inhibit p70S6K phosphorylation. In addition, under both serum and serum-free medium, AICAR significantly inhibited the DNA synthesis and cell numbers, and reduced cells at S phase. In conclusion, AMPK activation with AICAR inhibited growth and proliferation in cardiac fibroblasts, which involved inhibitory interactions between ERK and AMPK. This is the first report that AMPK could be a target of ERK in growth factors-induced proliferation, which may give a new mechanism that growth factors utilize in their promotion of proliferation in cardiac fibroblasts.  相似文献   

18.
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.  相似文献   

19.
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号