首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Abstract— d -Aspartate oxidase activity has been measured in water extracts of acetone powders prepared from cat forebrain, cerebellum and spinal cord, rat brain, hog brain and sheep brain stem, and compared with that found in rabbit and cat kidney. The results suggest that the brain enzyme has very similar properties to the n-aspartate oxidase ( d -aspartate: oxygen oxidorcductase (deaminating), EC 1.4.3.1) of kidney. Crude extracts (ammonium sulphate fractions of water extracts of acetone powders) displayed little activity without added FAD. FMN could not replace FAD. With oxygen as electron acceptor, the enzyme oxidized d -aspartate much more rapidly than d -glutamate, and displayed quite high activities with N -substituted derivatives of d -aspartate as substrates. Those amino acids susceptible to oxidation by d -amino acid oxidase were not oxidized by the d -aspartate oxidase. The regional distribution of the d -aspartate oxidase activity within the CNS differed from that of d -amino acid oxidase. As has been previously observed for kidney d -aspartate oxidase activity, dicarboxylic acids competitively inhibited this enzymic activity in brain extracts, while sodium benzoate and sodium barbitone, inhibitors of d -amino acid oxidase, were without effect.  相似文献   

2.
Abstract— Of the amino acids found in the CNS of 10-day-old rats the concentration of glycine alone was significantly higher in the spinal cord than in all other regions. Spinal levels of glycine, cystathionine, isoleucine and lysine from 1- and 10-day-old rats did not differ significantly from adult values, whereas the levels of most other amino acids, including GABA, glutamate, glutamine and taurine, were higher in the young animals than in the adults. Aspartate was the only amino acid found in lower concentration in the spinal cord of young animals than in adult animals. These and other observations support the conclusion that glycine is used as an inhibitory transmitter in rat spinal cord early in postnatal life. There was a general decrease in the activity of serine hydroxymethyltransferase and a slight increase in the activity of glycine:2-oxoglutarate aminotransferase in the CNS during development. The activity of neither enzyme correlated on a regional basis with the glycine content. The high level of hydroxymethyltransferase activity in the cerebellum of 10-day-old rats suggests that the activity of this enzyme reflects cell growth rate.  相似文献   

3.
Changes in Free Amino Acid Levels in Developing Human Foetal Brain Regions   总被引:1,自引:1,他引:0  
The levels of free amino acids were determined in human foetal brain regions during prenatal development. Variation in the distribution of amino acids and their rate of change in five segments of the CNS at different stages of ontogeny was observed. Striking developmental changes were found in the levels of aspartic acid in medulla-pons and spinal cord, glycine in the spinal cord, gamma-aminobutyric acid in the cerebral cortex, glutamic acid in the cerebral cortex, midbrain, and spinal cord, and taurine in the medulla-pons and spinal cord. At a late gestational period, glutamic acid was found most abundantly over all the brain regions, whereas the level of taurine was highest at an early gestational stage but not in spinal cord.  相似文献   

4.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

5.
—Using a simple apparatus designed to perfuse nervous tissue mini-slices retained on glass fibre filter discs, slices of adult (13 week) rat cerebral cortex and spinal cord were shown to release radioactive GABA and glycine, but not 2-amino-isobutyric acid, in response to increased potassium ion concentration of the perfusing medium. A major portion of this potassium-stimulated release was dependent upon the presence of calcium ions in the perfusing medium. Slices of cerebral cortex and spinal cord from rats of 1 day and 10 days postnatal age showed potassium-stimulated, calcium-dependent release of radioactive GABA and glycine respectively. These findings are consistent with other evidence that GABA and glycine are functioning as inhibitory transmitters in rats at least as soon as 1 day after birth.  相似文献   

6.
Cholesterol-Esterifying Enzymes in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: A cholesterol-esterifying enzyme which incorporates exogenous fatty acids into cholesterol esters in the presence of ATP and coenzyme A was demonstrated in 15-day-old rat brain. This enzyme was maximally active at pH 7.4 and distinct from the cholesterol-esterifying enzyme reported earlier (Eto and Suzuki, 1971), which has a pH optimum at 5.2 and does not require cofactors. Properties of the two enzymes have been compared. Both the enzymes showed negligible esterification with acetate and were maximally active with oleic acid. The pH 5.2 enzyme esterified desmosterol, lanosterol and cholesterol at about the same rate, while the pH 7.4 enzyme was only 50% as active with lanosterol as it was with cholesterol and desmosterol. Phosphatidyl serine stimulated the pH 5.2 enzyme but not the pH 7.4 enzyme. Phosphatidyl choline and sodium taurocholate showed no effect on either of the enzymes. Both the enzymes were associated with particulate fractions, but the pH 7.4 enzyme was localized more in the microsomes. Purified myelin showed 2.6-fold and 1.5-fold higher specific activities of pH 5.2 and 7.4 enzymes respectively, when compared with homogenate. About 7–10% of total activity of both the enzymes was associated with purified myelin. Brain stem and spinal cord showed higher specific activity of pH 5.2 enzyme than cerebral cortex and cerebellum, while pH 7.4 enzyme specific activity was higher in cerebellum and brain stem than in cerebral cortex and spinal cord. Microsomal pH 7.4 activity showed progressive increase prior to the active period of myelination, reaching a maximum on the 15th day after birth and declined to 20% of the peak activity by 30 days. In contrast, pH 5.2 enzyme reached maximum activity about the 6th day after birth and remained at this level well into adulthood. In 15-day-old rat brain, pH 7.4 enzyme had five to six times higher specific activity than pH 5.2 enzyme, while in adults the activities were equal. The pH 7.4 enzyme showed a threefold higher specific activity than pH 5.2 enzyme in myelin from 15-day-old rats, but in adults the reverse was true.  相似文献   

7.
Abstract— Evidence is presented that glycine is taken up by two different transport systems in rat CNS tissue slices; one system has relatively low affinity for glycine (Km = 300 μ m ) and predominates in cerebral cortex, cerebellum and mid-brain, the other has a higher affinity for glycine (Km = 40 μ m ) and is detectable only in spinal cord, medulla and pons. The low affinity transport system appears to be shared by other small neutral amino acids, whereas the high affinity system is very specific for glycine. Both transport systems were shown to be present in particles in homogenates of CNS tissue by incubation with glycine in vitro , and subcellular fractionation studies suggested that synaptosomes were partly responsible for such uptake. Various substances were tested as inhibitors of the high affinity uptake system for glycine in spinal cord slices; the most potent inhibitors were p -chloro-mercuriphenylsulphonate, N -ethylmaleimide, chlorpromazine, imipramine, desipramine, hydrazinoacetic acid and haloperidol. No competitive inhibitors of the high affinity glycine uptake were found. It is suggested that the high affinity transport system is associated with inhibitory synapses where glycine is a transmitter.  相似文献   

8.
After prolonged treatment of rats with lithium (pellets, 0.21% lithium carbonate, or 0.5 mg/ml lithium chloride in drinking water) for three months, the level of lithium in plasma was 0.87 meq/liter; in several brain regions, between 1.06–1.39 eq/g wet weight. The content of sodium and potassium in the plasma was normal. The level of potassium in the brain regions tested increased by 13–30% and that of sodium by about 10%. Glycine levels increased significantly in all the regions (cerebral cortex, midbrain, cerebellum, and spinal cord). In the cerebellum GABA was also increased, while glutamine was decreased. In midbrain, apart from increases in glycine levels, alamine, valine, GABA and lysine were also increased. In the spinal cord, glutamic acid was also increased. Changes were largely in the putative neurotransmitters. Long-term treatment with lithium also influenced the high-affinity binding of [3H]spiperone in the cerebral cortex and corpus striatum. Two specific binding sites were found in both brain regions; the main change was the reduction in the lower affinity binding site (B max2).  相似文献   

9.
Regional Distribution of Kininase in Rat Brain   总被引:1,自引:1,他引:0  
Kininase activity, which inactivates kinins, was measured in seven regions of the rat brain (i.e., the cerebral cortex, cerebellum, striatum, midbrain, hippocampus, hypothalamus, medulla oblongata), and in the spinal cord with a bioassay method using bradykinin as the substrate. Specific kininase activities in the cerebellum and striatum were higher than those in the other five regions or the spinal cord. Angiotensin-converting enzyme activity, which was measured fluorometrically using Hip-His-Leu as substrate, showed high activity in the striatum and cerebellum. These findings suggest that the presence of high concentrations of peptidases plays a role in the degradation of kinins and/or other peptides in these areas.  相似文献   

10.
—The regional distributions of serine hydroxymethyltransferase (SHMT) and glycine transaminase (GT) have been determined in five areas of the CNS of the rat. The SHMT activity per mg protein varied in these areas in the following order: medulia-pons and spinal cord > cerebellum > midbrain > telencephalon. The GT activity per mg protein was essentially the same in the four brain areas, whereas, in the spinal cord it was lower. The activity of GT did not correlate with the glycine content (r=?0.45. P > 0.05). However, SHMT activity per mg protein was correlated with the glycine content in four regions (the telencephalon, midbrain, medulla-pons and spinal cord; r= 0.997, P < 0.05). When the activity of SHMT was expressed per relative number of mitochondria, the enzyme levels were correlated with the glycine content in all five areas (r= 0.952, P < 0.05). The distribution of SHMT was determined in the primary subcellular fractions of the CNS. The SHMT activity in these areas of the CNS appeared to be located predominately in paniculate structures, while only 1 to 4 per cent was found in the soluble fraction. The crude nuclear (P1) and the crude mitochondrial (P2) fractions contained 90–97 per cent of the activity. Subfractionation of P2 pellets obtained from the telencephalon, medulla-pons and spinal cord indicated the SHMT activity was localized in both ‘free’ and occluded mitochondria.  相似文献   

11.
—The activity of the glycine cleavage system (GCS) was determined in homogenates from five specific regions of the rat CNS (telencephalon, midbrain, cerebellum, medulla-pons, and spinal cord). An inverse trend was noted between the glycine content and the specific activity of the GCS in the regions. A 25-fold range in the enzyme activities was found between the telencephalon (highest) and the spinal cord (lowest). The properties of the GCS activity in CNS homogenates agreed with those properties previously described for this system in partially purified preparations of liver and brain mitochondria (Kikuchi , 1973; Bruin et al., 1973). Within the CNS homogenates, the liberation of CO2 from the carboxyl carbon of glycine was quantitatively coupled to the formation of serine. The presence of an endogenous inhibitor(s) within neural tissues was suggested by the non-additivity of the activities when homogenates from the various regions were combined. Moreover, homogenates of CNS tissue inhibited the GCS activity of liver homogenates, and an inverse relationship was found between the level of GCS activity in a given region of the CNS and its ability to inhibit the GCS activity of liver homogenates. This inhibition of liver activity was greatest when liver was incubated with homogenates of spinal cord (86%) and lowest when incubated with homogenates of telencephalon (20%). Because of this endogenous inhibition, the apparent activity of the GCS measured in vitro may not reflect the contribution of this enzyme system in the metabolism of glycine in vivo. Although the significance of this inhibition is not known, a possible role is discussed for the regulation of the levels in glycine and one-carbon pools within the CNS.  相似文献   

12.
The rates of disappearance of tritiated isethionic acid (2-hydroxyethanesulfonic acid) in eight regions of the rat central nervous system were studied. By utilizing the technique of graphical analysis (curve peeling), it was determined that seven areas (striatum, diencephalon, pons-medulla, midbrain, hippocampus, spinal cord, and cortex) exhibited triphasic (fast, intermediate, and slow) disappearance rates while only the cerebellum displayed a biphasic (fast, slow) rate. The half-lives for the fast component in the different regions of the central nervous system varied from 0.5 hr (midbrain and cortex) to 1.5 hr (diencephalon, cerebellum, and spinal cord); the half-lives for the intermediate component of the triphasic rate varied from 3.5 hr in the midbrain and spinal cord to 5.5 hr in the hippocampus. Half-lives estimated for the slow component of the multiphasic rate of disappearance of tritiated isethionic acid ([3H]ISA) varied from 28 hr (cerebellum) to 90 hr (spinal cord).  相似文献   

13.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were determined in 23 selected parts of the dog CNS and 4 parts of the peripheral nervous system. Maximum ChAT activity was found in the caudate nucleus and the ventral roots of the spinal cord. High activity was also present in the thalamus, the pons, the cerebral cortex, the medulla oblongata, the ventral spinal horns and the sciatic nerve. The lowest activity was measured in the cerebellum, the dorsal cord roots and the spinal ganglia. Maximum AChE activity was found in the caudate nucleus and the cerebellum. Relatively high activity was also present in the thalamus, the pons, the medulla oblongata, the grey matter of the spinal cord and the spinal ganglia. The lowest AChE activity was measured in the ventral and dorsal spinal roots.  相似文献   

14.
Abstract— The effects of 121 m m -K+, 10 m m -glutamate, 5 m m -GABA, 1 m m -glycine, 0.1 m m -NE, and 1–10 μ m ACh on cyclic GMP levels in tissue slices prepared from cerebral cortex and cerebellum of mouse, rabbit, guinea-pig, cat, and rat were studied. Basal levels of cyclic GMP in the cerebella of mice, guinea-pigs and cats were 4–15 and 70 pmol/mg prot in rat, whereas in the cerebral cortex of the same animals, levels were only 0.6–2 pmol/mg prot. In contrast, basal levels of the cyclic nucleotide were 1–2 pmol/mg prot in both of these regions in rabbit brain. Only 121 m m -K+ was capable of increasing cyclic GMP levels in all the tissues studied. Elevations ranged from 30% in rat cerebral cortex to 2800% in mouse cerebellum. Glutamate produced a 30–1000% rise of cyclic GMP levels in all tissues except rabbit cerebellum. NE elevated levels of cyclic nucleotide 2- to 3-fold in slices of cerebellum from all species studied but had no effect in cerebral cortex. GABA and glycine had no effect in any tissue except mouse cerebellum. ACh had no consistent effect on levels of cyclic GMP in any brain region investigated. These results suggest that mechanisms regulating cyclic GMP levels in mammalian CNS vary among brain regions and among animal species.  相似文献   

15.
The effect of electroshock on regional CNS energy reserves in mice   总被引:9,自引:6,他引:3  
ATP, phosphocreatine, glycogen, glucose and lactate levels were measured in the cerebral cortex, thalamus, cerebellum, brain stem and spinal cord of mice following supramaximal electroshock. During the initial 17 s after the onset of a 2 s electrical stimulus high energy phosphate expenditure exceeded formation in all regions but was slower in spinal cord than in the other regions. In cerebral cortex high energy phosphate utilization continued to exceed formation for 32 s which was twice as long as in any other region studied. Altered levels of metabolites recovered most rapidly in spinal cord and least rapidly in cerebral cortex. Pretreatment with a non-anaesthetic dose of phenobarbitone influenced the effect of electroshock. Most of the clinical seizure was prevented, and increased high energy phosphate utilization was sustained for a much shorter period. Only in cerebral cortex did high energy phosphate expenditure exceed formation for as long as 15 s after the electrical stimulus; but even in this region the excess of expenditure over formation was much less than in untreated animals.  相似文献   

16.
The new member of the mammalian amino acid/auxin permease family, PAT2, has been cloned recently and represents an electrogenic proton/amino acid symporter. PAT2 and its paralog, PAT1/LYAAT-1, are transporters for small amino acids such as glycine, alanine, and proline. Our immunodetection studies revealed that the PAT2 protein is expressed in spinal cord and brain. It is found in neuronal cell bodies in the anterior horn in spinal cord and in brain stem, cerebellum, hippocampus, hypothalamus, rhinencephalon, cerebral cortex, and olfactory bulb in the brain. PAT2 is expressed in neurons positive for the N-methyl-d-aspartate subtype glutamate receptor subunit NR1. PAT2 is not found in lysosomes, unlike its paralog PAT1, but is present in the endoplasmic reticulum and recycling endosomes in neurons. PAT2 has a high external proton affinity causing half-maximal transport activation already at a pH of 8.3, suggesting that its activity is most likely not altered by physiological pH changes. Transport of amino acids by PAT2 activity is dependent on membrane potential and can occur bidirectionally; membrane depolarization causes net glycine outward currents. Our data suggest that PAT2 contributes to neuronal transport and sequestration of amino acids such as glycine, alanine, and/or proline, whereby the transport direction is dependent on the sum of the driving forces such as substrate concentration, pH gradient, and membrane potential.  相似文献   

17.
Abstract— The regional and subcellular distribution of the glycine decarboxylation which occurs in the presence of tetrahydrofolate, NAD and pyridoxal phosphate, has been measured in CNS tissue of cat, sheep and rat. The activity appeared similar to that of liver. It was located within mitochondria, and distributed regionally and subcellularly in the same manner as succinate dehydrogenase, a mitochondrial marker. Activity was low in pons, medulla and spinal cord, and was not affected by a number of drugs, some of which excite and some of which depress the activity of the CNS. All evidence suggests that glycine decarboxylation plays no direct role in glycine inhibitory transmission.  相似文献   

18.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

19.
The rate at which the metabolism is stopped by means of freezing in Freon-12 (–150°C) was studied in various areas of the rat and mouse CNS, using changes in temperature and levels of glucose and lactate as parameters for this rate. The rat cerebral cortex was frozen after 0.5 min while the hypothalamus reached 0°C after more than 1.5 min. The skin on the skull was found to be the most important temperature isolator for the cortex. Substrate levels can be studied in this area only if this piece of skin is removed previously. In the mouse, the cerebral cortex was frozen after 6 s, the hypothalamus after 0.5 min. The lumbar level of the mouse spinal cord was frozen after 15 s, the cervical level only after 47 s. Liquid nitrogen alone cooled the mouse cerebral cortex at least as fast as did Freon at its melting point. A gradual decrease from dorsal to ventral was observed in the glucose level of the molecular layer of the mouse cerebellum. The existence of a freezing front, moving slowly from dorsal to ventral, and its consequences for the measured levels of biologically labile substrates, are discussed.  相似文献   

20.
(1) The chemical composition of the CNS (separated into cerebrum, cerebellum, brain stem and spinal cord) was determined in sheep during foetal and post-natal development and in adults. (2) The spinal cord differed from the remainder of the CNS in growing more after the period studied (50-day-old foetuses to 5-week-old lambs) than before it. This was largely attributable to lipid accumulation. (3) Chemical growth (accumulation of DNA, protein and lipid) proceeded linearly in spinal cord, logarithmically in cerebrum and cerebellum while in brain stem growth was described by a sigmoid function. (4) Fat-free dry matter, protein, total lipid, cholesterol and phospholipid concentrations increased progressively in all parts of the CNS but DNA concentrations changed little. In the cerebrum alone there was an increase in DNA concentration during maturation suggesting an increased cell population. Cholesterol was present predominantly in the free form but esters were detected in foetal tissues from 70 up to 120 days gestation. (5) Cerebroside, the characteristic lipid of myelin, increased in concentration soon after 85 days of gestation, up to which point very low values were recorded, the rate varying according to the region of the CNS examined. Rates of increase in total regional cerebroside content were used to identify periods of myelination and the results suggest that there are two periods of peak activity, one about 20 days before birth and the other at 10-20 days after birth. (6) The composition of lipids added during the two phases of myelination and during maturation were characteristically different. In the spinal cord, lipid analyses best reflect changes in myelin composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号