首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.  相似文献   

2.
Neurotransmission is a multistage regulated process in which a variety of active molecules contained in vesicles are liberated in response to specific stimuli from different types of neurone or related cells. This includes the release of fast neurotransmitters such as amino acids and acetylcholine from central and peripheral synapses, but also that of relatively slow-acting polypeptides from central and peripheral neurones or neuroendocrine cells. Considerable progress has been made over recent years in the understanding at a molecular level of the mechanism of regulated exocytosis, a crucial phase in this phenomenon. The currently proposed overall mechanism, which incorporates the “SNARE” hypothesis for vesicle-membrane docking and fusion, is based on data from experimental models ranging from brain synaptosomes to mast cells. Since the kinetics of the models studied and the physiological effects of the neurotransmitters implicated vary so much, it is pertinent to question whether a general mechanism can be proposed from such experimental data. This review examines known differences in putative exocytotic mechanisms for the various systems studied and attempts to relate these to the nature of the active substances released. Differences exist in each step of the exocytosis process and include the channel through which Ca2+ enters to trigger it or the internal Ca2+ source, the type of vesicle in which the transmitter is packaged, the way vesicles are translocated to the surface membrane or how they dock and fuse with it. Major differences have been reported in release mechanisms of different types of vesicle, but minor differences also exist within the same vesicle class. Thus small synaptic vesicles and large dense core vesicles are translocated by distinct processes and the Ca2+ channels, Ca2+ sensors and docking proteins involved in other steps are not identical in all neuronal phenotypes. It may be concluded that each of these differences has evolved to accommodate the different physiological requirements of the neuromodulator released.  相似文献   

3.
Fast- and slow-rising AMPA receptor-mediated EPSCs occur at central synapses. Fast-rising EPSCs are thought to be mediated by rapid local release of glutamate. However, two controversial mechanisms have been proposed to underlie slow-rising EPSCs: prolonged local release of transmitter via a fusion pore, and spillover of transmitter released rapidly from distant sites. We have investigated the mechanism underlying slow-rising EPSCs and the diffusion coefficient of glutamate in the synaptic cleft (Dglut) at cerebellar mossy fiber-granule cell synapses using a combination of diffusion modeling and patch-clamp recording. Simulations show that modulating Dglut has different effects on the peak amplitudes and time courses of EPSCs mediated by these two mechanisms. Slowing diffusion with the macromolecule dextran slowed slow-rising EPSCs and had little effect on their amplitude, indicating that glutamate spillover underlies these currents. Our results also suggest that under control conditions Dglut is approximately 3-fold lower than in free solution.  相似文献   

4.
Mechanisms of glutamate release from astrocytes   总被引:6,自引:1,他引:5  
Astrocytes can release the excitatory transmitter glutamate which is capable of modulating activity in nearby neurons. This astrocytic glutamate release can occur through six known mechanisms: (i) reversal of uptake by glutamate transporters (ii) anion channel opening induced by cell swelling, (iii) Ca2+-dependent exocytosis, (iv) glutamate exchange via the cystine-glutamate antiporter, (v) release through ionotropic purinergic receptors and (vi) functional unpaired connexons, "hemichannels", on the cell surface. Although these various pathways have been defined, it is not clear how often and to what extent astrocytes employ different mechanisms. It will be necessary to determine whether the same glutamate release mechanisms that operate under physiological conditions operate during pathological conditions or whether there are specific release mechanisms that operate under particular conditions.  相似文献   

5.
THIS report deals with some of the statistical properties of quantal transmitter release at the Mauthner fibre-giant fibre synapse in the hatchetfish Gasteropelecus and the way in which these properties are modified by presynaptic intracellular depolarization. The experiments reported indicate that Poisson statistics describe transmitter release in the hatchetfish at low, but not at high, release levels.  相似文献   

6.
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.The speed and potency of synaptic transmission depend on the immediate availability of synaptic vesicles filled with high concentrations of neurotransmitter. In this article, we focus on the mechanisms responsible for packaging transmitter into synaptic vesicles and for reuptake from the extracellular space that both terminates synaptic transmission and recycles transmitter for future rounds of release. Collectively, we refer to this entire process as the neurotransmitter cycle.The recycling of neurotransmitter illustrates a general, conceptual problem for the mechanism of vesicular release. At the plasma membrane, more active reuptake should help to replenish the pool of releasable transmitter, but may also reduce the extent and duration of signaling to the postsynaptic cell. Conversely, loss of reuptake increases the activation of receptors but results in the depletion of stores (Jones et al. 1998). At the vesicle, steeper concentration gradients release more transmitter per vesicle but reduce the cytosolic transmitter available for refilling, whereas more shallow gradients facilitate refilling but reduce the transmitter available for release. The way in which the nerve terminal balances these competing factors thus has profound consequences for synaptic transmission.  相似文献   

7.
How does calcium trigger neurotransmitter release?   总被引:21,自引:0,他引:21  
Recent work has established that different geometric arrangements of calcium channels are found at different presynaptic terminals, leading to a wide spectrum of calcium signals for triggering neurotransmitter release. These calcium signals are apparently transduced by synaptotagmins - calcium-binding proteins found in synaptic vesicles. New biochemical results indicate that all synaptotagmins undergo calcium-dependent interactions with membrane lipids and a number of other presynaptic proteins, but which of these interactions is responsible for calcium-triggered transmitter release remains unclear.  相似文献   

8.
Based on the findings of alterations in the chemoreactivity of neurons under conditioning and its possible significance for the formation of transient neuronal junctions, the authors investigated the influence of electrical stimulation of the Locus coeruleus upon the transmitter sensitivity of cortical and hippocampal neurons. The majority of neurons showed immediately after stimulation of the Locus coeruleus a different reaction to microiontophoretic application of acetylcholine, dopamine and glutamate than under normal conditions. Obviously there must have occurred qualitative changes because a superposition effect of the reactions following stimulation of the Locus coeruleus and application of the substances has rarely been observed. The release of noradrenaline provoked by the stimulation of the Locus coeruleus evidently leads to qualitative changes in the neurone texture, which may occur both inter- and intraneuronally.  相似文献   

9.
The dynamics of presynaptic transmitter release are oftern matched to the functional properties of the prostsynaptic cell. In organisms ranging from cats to crickets, evidence suggests that retrograde signaling is essential for matching these presynaptic release properties to individual postsynaptic partners. Retrograde interactions appear to control the development of presynaptic, short-term facilitation and depression. 1994 John Wiley & Sons, Inc.  相似文献   

10.
Brain ion homeostasis is severely perturbed during spreading depression of Leao and during anoxia. The ionic composition of the extracellular space changes abruptly and approaches the intracellular concentrations owing to an increase in cell permeability. In spreading depression, synchronous transmitter efflux caused by a depolarization of the presynaptic terminals has been implicated as a possible mechanism that would explain the concomitant movement of ions. Anoxia, having many features in common with spreading depression, may follow the same mechanism. We have measured the concentrations of extracellular potassium with ion-selective microelectrodes and dopamine by in vivo voltammetry with carbon fiber microelectrodes during spreading depression and anoxia to compare the temporal relationship between the release of dopamine and ion movements in the striatum. There is a pronounced release of dopamine during both spreading depression and anoxia. In spreading depression, the sharp increase of potassium concentration that follows an initial smaller and slower increase of potassium is accompanied by the release of dopamine. In anoxia, the dopamine release clearly precedes the fast rise of extracellular potassium concentration. We conclude that in striatum, there is a pronounced dopamine release during spreading depression and anoxia, but that the relationships between ionic changes and transmitter release for these two phenomena are different and probably reflect different mechanisms.  相似文献   

11.
Several investigators of the molluscan nervous system have used TEA, injected into presynptic neurones, to determine whether the connexions made by these neurones are monosynaptic. The increase in spike duration produced by the TEA causes an increase in transmitter release, and hence an increase in the amplitude of the postsynaptic potential if the connexion is direct. If the connexion is indirect, the spike in an intercalated neurone will not be affected by the TEA, and the postsynaptic response will remain constant. Experiments described here show that TEA can cross electrotonic junctions in the gastropod mollusc Planorbis corneus. They also show that each TEA-prolonged presynaptic impulse may produce more than one postsynaptic impulse. A larger postsynaptic potential could therefore be produced by presynaptic injection of TEA in the case of an indirect connexion. This indicates that care must be taken when interpreting the results of experiments using TEA to test for monosynaptic connexions.  相似文献   

12.
The application of fluctuation analysis to studies of synaptic function in the neocortex is discussed. Analysis of failures of transmission has been valuable in indicating whether a presynaptic or a postsynaptic site is responsible for a change in synaptic efficacy. When combined with detailed ultrastructural verification of all synapses involved in an individual cell to cell connection, a reasonable estimate of quantal size and release probability under conditions of low frequency activity can be obtained. However, both the number of available release sites in functional terms and the probability that an action potential (AP) will release transmitter from any given site can vary from AP to AP at higher frequencies. A variety of presynaptic mechanisms that modulate release are now apparent. For example, one mechanism dominates release patterns at one class of connection which is insensitive to absolute firing frequency, but responsive to changes in frequency. At another class of connection, a different mechanism dominates, resulting in high sensitivity to frequency.  相似文献   

13.
The theory that neurotransmitter release is regulated locally at the individual terminals of neurons has achieved a rapid and seemingly secure status in our understanding of neuronal function both in the periphery and in the central nervous system. This concept of negative feedback control through the monitoring of the perineuronal concentration of previously released transmitter has been extended to a multiplicity of transmitters and utilized to explain the mechanisms of action of diverse classes of drugs, ranging from antihypertensives to antidepressants. It is my view that negative feedback by terminal and by somadendritic receptors cannot account for the existing body of experimental work. Analyses of the profiles of action of agonists and antagonists, and of the per pulse release of transmitter in the absence of drugs in a variety if peripheral organ systems, as well as in superfused brain slices, demonstrates the need for alternate interpretations of the available data. Evidence is provided that the actions of agonists to inhibit transmitter release and that of antagonists to enhance release occur at different cellular loci and that the purported unitary action of these two classes that is so central to the validity of presynaptic theory is unsupportable.  相似文献   

14.
15.
M F Lokhandwala 《Life sciences》1979,24(20):1823-1832
The presence of a number of presynaptic receptor mechanisms on postganglionic sympathetic nerve terminals has been described by various investigators. In the present review evidence is presented which supports the concept that activation of these presynaptic receptors results in either the inhibition or facilitation of transmitter release from sympathetic nerve endings. The role of these mechanisms in controlling sympathetic function to the myocardium in physiological as well as pathophysiological condition is discussed. The possibility that pharmacological actions of several agents may have a presynaptic component is also discussed.  相似文献   

16.
Alpha-ketoglutarate together with an amino group donor (alanine) was shown to be able to serve as a precursor for the glutamate pool which is released by potassium-induced depolarization (i.e., transmitter glutamate) in cerebellar granule cells. However, these compounds could not be utilized as precursors for intracellular glutamate or for release of transmitter aspartate. The formation of transmitter glutamate was inhibited by the transamination inhibitor aminooxyacetic acid but not by phenylsuccinate, an inhibitor of the dicarboxylate carrier in the mitochondrial membrane. Both of these inhibitors have previously been found to inhibit synthesis of transmitter glutamate from glutamine. The results support the hypothesis that alpha-ketoglutarate and alanine undergo transamination in the cytosol to form pyruvate and glutamate, and that this glutamate pool is available for transmitter release of glutamate but does not constitute the major intracellular pool of glutamate.  相似文献   

17.
The modern condition of knowledge about the molecular mechanisms underlying the quantal transmitter release in the central and the peripheric synapses is analysed. The data about the synaptic vesicles types, their forming, transporting to the sites of release at the nerve endings, exo- and endocytosis processes are presented. Ultrastructural and molecular organization of active zone of nerve ending and transmitter release morphofunctional unit--secretosome, which includes synaptic vesicle, exocytosis protein complex and calcium channels, are described. The basic proteins involved in the exo- and endocytosis and their interactions during transmitter release are examined. The role of the intracellular buffer systems, calcium micro- and macrodomains in the quantal transmitter secretion are considered. The reasons of the active zones functional non-uniformity and plasticity and factors reduced transmitter release in the active zone to the single quantum are analysed.  相似文献   

18.
G-protein-mediated inhibition of Ca2+ current is ubiquitous in neurons, and in synaptic terminals it can lead to a reduction in transmitter release (presynaptic inhibition). This type of Ca2+ current inhibition can often be relieved by prepulse depolarization, so the disinhibition of Ca2+ current can combine with Ca2+-dependent mechanisms for activity-induced synaptic facilitation to amplify this form of short-term plasticity. We combine a mathematical model of a G-protein-regulated Ca2+ channel with a model of transmitter secretion to study the potential effects of G-protein-mediated Ca2+ channel inhibition and disinhibition on transmitter release and facilitation. We investigate several scenarios, with the goal of observing a range of behaviors that may occur in different synapses. We find that the effects of Ca2+ channel disinhibition depend greatly on the location and distribution of inhibited channels. Facilitation can be greatly enhanced if all channels are subject to inhibition or if the subpopulation of channels subject to inhibition are located closer to release sites than those insensitive to inhibition, an arrangement that has been suggested by recent experiments (Stanley and Mirotznik, 1997). We also find that the effect of disinhibition on facilitation is greater for longer action potentials. Finally, in the case of homosynaptic inhibition, where Ca2+ channel inhibition occurs through the binding of transmitter molecules to presynaptic autoreceptors, there will be little reduction in transmitter release during the first of two successive bursts of impulses. The reduction of release during the second burst will be significantly greater, and if the unbinding rate of autoreceptors is relatively low, then the effects of G-protein-mediated channel inhibition become more pronounced as the duration of the interburst interval is increased up to a critical point, beyond which the inhibitory effects become less pronounced. This is in contrast to presynaptic depression due to the depletion of the releasable vesicle pool, where longer interburst intervals allow for a more complete replenishment of the pool. Thus, G-protein-mediated Ca2+ current inhibition leads to a reduction in transmitter release, while having a highly variable amplifying effect on synaptic facilitation. The dynamic properties of this form of presynaptic inhibition are very different from those of vesicle depletion.  相似文献   

19.
Neurotransmitter content was measured in two identified giant neurones in isogenic and wild-type populations of the freshwater pond snail Lymnaea stagnalis. The paired serotonergic cerebral giant neurones (LC1 and RC1) have higher transmitter levels and less variability in inbred animals than in wild-type animals. The transmitter content of the unpaired dopaminergic right pedal giant neurone (RPeD1) does not differ between inbred and wild-type animals in either level or variability. It is proposed that serotonin content of the cerebral giant neurones is under partial genetic control, and that animals of the wild-type population may possess a number of different alleles for the genes influencing serotonin levels. Inbreeding resulted in fixation of an allele promoting high serotonin levels. This particular wild-type population is probably already isogenic for genes influencing dopamine content in the right pedal giant neurone.  相似文献   

20.
The resting electrical properties of the presynaptic terminal of the squid giant synapse have been determined by using constant current pulses. After short periods of repetitive stimulation, the terminal resistance, time constant and capacitance are found to be increased. These changes are absent in terminals bathed in artificial sea water containing no calcium, and sea water containing 5 mM cobalt. It seems likely that these changes are associated with transmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号