首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures of mitochondrial bc 1 complex have been reported based on four different crystalforms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe–2S]protein, surprisingly, appeared at three different positions: the c 1 position, where the [2Fe–2S]cluster exists in close proximity to the heme c 1; the b position, where the [2Fe–2S] clusterexist in close proximity to the cytochrome b; and the intermediate position where the[2Fe–2S] cluster exists in between c 1 and b positions. The conformational changes betweenthese three positions can be explained by a combination of two rotations; (1) a rotation of theentire extrinsic domain and (2) a relative rotation between the cluster-binding fold and thebase fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcationmechanism at the QP binding pocket of the bc 1 complex is well explained using theseconformational changes of the Rieske [2Fe–2S] protein.  相似文献   

2.
The plant mitochondrial cytochrome bc 1 complex, like nonplant mitochondrial complexes,consists of cytochromes b and c 1, the Rieske iron–sulfur protein, two Core proteins, and fivelow-molecular mass subunits. However, in contrast to nonplant sources, the two Core proteinsare identical to subunits of the general mitochondrial processing peptidase (MPP). The MPPis a fascinating enzyme that catalyzes the specific cleavage of the diverse presequence peptidesfrom hundreds of the nuclear-encoded mitochondrial precursor proteins that are synthesizedin the cytosol and imported into the mitochondrion. Integration of the MPP into the bc 1complex renders the bc 1 complex in plants bifunctional, being involved both in electrontransport and in protein processing. Despite the integration of MPP into the bc 1 complex,electron transfer as well as translocation of the precursor through the import channel areindependent of the protein-processing activity. Recognition of the processing site by MPPoccurs via the recognition of higher-order structural elements in combination with charge andcleavage-site properties. Elucidation of the three-dimensional (3-D) structure of the mammaliancytochrome bc 1 complex is highly useful for understanding of the mechanism of action of MPP.In memory of my teacher—an insightful, devoted, and enthusiastic scientist and an amiable and kind-hearted human being—Lars Ernster  相似文献   

3.
He-Wen Ma 《BBA》2008,1777(3):317-326
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with β-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

4.
Both the soluble cytochrome c2 and the membrane-bound cytochrome cy act as secondary electron carriers in photoinduced cyclic electron transfer chain of Rhodobacter capsulatus [Jenney and Daldal (1993) EMBO J 12: 1283–1292]. In this work, we have studied the kinetics of electron transfer between these secondary electron donors and the reaction center in intact cells of two mutants, MT-G4/S4 and MT-GS18 deleted in cytochrome c2 and in cytochrome c2 plus cytochrome bc1 complex, respectively. In the MT-G4/S4 mutant, only about one third of the primary electron donor is reduced by cytochrome cy in less than five ms. The remaining fraction is reduced in several seconds, although about 90% of the photoxidized cytochrome cy is reduced in less than 10 ms by the cytochrome bc1 complex. This implies that cytochrome cy is not in thermodynamic equilibrium with the large fraction of primary donors which are slowly reduced. As shown by energy transfer measurements, the reaction centers connected to cytochrome cy and the disconnected reaction centers are localized in the same membrane region. We propose that the movement of cyt cy is restricted to a small membrane domain which includes a single cytochrome bc1 complex. The kinetics of cytochrome cy photooxidation in the MT-G4/S4 mutant in the presence of myxothiazol presents a fast phase (t1/2 3 µs) followed by a slower phase (t1/2 20 µs). In the case of the double mutant MT-GS18, the kinetics of electron transfer between cytochrome cy and the reaction center is highly multiphasic and much slower than those observed for the MT-G4/S4 mutant. In particular, the amplitude of the fast phase is decreased by more than a factor 2 and the 20-µs phase is not observed. This implies an important structural role of the cytochrome bc1 complex in the interaction between reaction center and cytochrome cy, and their formation in supercomplex. The more problable stoichiometry of electron carriers in this supercomplex is 2 reaction centers, 2 cytochrome cy and 1 cytochrome bc1 complex.  相似文献   

5.
The reaction between membrane-bound cytochrome c and the reaction center bacteriochlorophyll g dimer P798 was studied in the whole cells and isolated membranes of Heliobacterium gestii. In the whole cells, the flash-oxidized P798+ was rereduced in multiple exponential phases with half times (t 1/2s) of 10 s, 300 s and 4 ms in relative amplitudes of 40, 35 and 25%, respectively. The faster two phases were in parallel with the oxidation of cytochrome c. In isolated membranes, a significantly slow oxidation of the membrane-bound cytochrome c was detected with t 1/2 = 3 ms. This slow rate, however, again became faster with the addition of Mg2+. The rate showed a high temperature dependency giving apparent activation energies of 88.2 and 58.9 kJ/mol in the whole cells and isolated membranes, respectively. Therefore, membrane-bound cytochrome c donates electrons to the P798+ in a collisional reaction mode like the reaction of water-soluble proteins. The rereduction of the oxidized cytochrome c was suppressed by the addition of stigmatellin both in the whole cells and isolated membranes. This indicates that the electron transfer from the cytochrome bc complex to the photooxidized P798+ is mediated by the membrane-bound cytochrome c. The multiple flash excitation study showed that 2–3 hemes c were connected to the P798. By the heme staining after the SDS-PAGE analysis of the membraneous proteins, two cytochromes c were detected on the gel indicating apparent molecular masses of 17 and 30 kDa, respectively. The situation resembles the case in green sulfur bacteria, that is, the membrane-bound cyotochrome c z couples electron transfer between the cytochrome bc complex and the P840 reaction center complex.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The bc 1-complex (EC 1.10.2.2.) from Triticum aestivum L. was purified by cytochrome-c affinity chromatography and gel filtration using either etiolated seedlings or wheat-germ extract as starting material. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated enzyme revealed ten bands, which were analysed by immunoblotting and direct amino-acid sequencing. The enzyme from wheat is the first bc 1-complex that is reported to contain four core proteins (55.5, 55.0, 51.5 and 51.0 kDa). In addition, the wheat bc 1-complex comprises cytochrome b (35 kDa), cytochrome c 1 (33 kDa) the Rieske iron-sulphur protein (25 kDa) and three small subunits < 15 kDa. This composition differs from the one reported in fungi, mammals and potato. Partial sequence determination of the large subunits suggests that the 55.5 and 55.0-kDa-proteins represent the -subunit of the general mitochondrial processing peptidase, and the 51.5 and 51.0-kDa proteins the -subunit of this enzyme. The bc 1-complex from wheat efficiently processes mitochondrial precursor proteins as shown in an in-vitro processing assay. In control experiments the isolated bc 1-complexes from potato, yeast, Neurospora and beef, all purified by the same isolation procedure, were also tested for processing activity. Only the protein complexes from plants contain the general mitochondrial processing peptidase. The composition of the wheat bc 1-complex sheds new light on the co-evolution of the processing peptidase and the middle segment of the respiratory chain.Abbreviations MPP mitochondrial processing peptidase We wish to thank Prof. G. Schatz, Biozentrum Basel, Switzerland and Prof. H. Weiss, Universität Düsseldorf, Germany for providing antibodies against the repiratory subunits of the bc 1-complex from yeast and Neurospora and to H. Mentzel, A. Leisse, R. Breitfeld and B. Hidde for excellent technical assistance. Thanks are also due to Prof. M. Boutry, Université de Louvaine-la-Neuve, Belgium for providing a plasmid containing the -subunit of ATPase from tobacco. This research was supported by the Deutsche Forschungsgemeinschalft and the Bundesministerium für Forschung und Technologie.  相似文献   

7.
Assembly studies in vitro of deletion mutants of the iron–sulfur protein into the cytochromebc 1 complex revealed that mutants localized in the extramembranous regions of the proteinwere not assembled into the complex in contrast to the efficient assembly of mutants in themembrane-spanning region. Charged amino acids located in the extramembranous 1-4 loopand the 1 helix were mutated and expressed in yeast cells lacking the gene for the iron–sulfurprotein. Mutating the charged amino acid residues H124, E125, R146, K148, and D149 aswell as V132 and W152 resulted in loss of enzymatic activity due to the loss of iron–sulfurprotein suggesting that these amino acids are required to maintain protein stability. By contrast,no loss of iron–sulfur protein accompanied the 30–50% loss of bc 1 complex activity in mutantsof three conserved alanine residues, A86, A90, and A92, suggesting that these residues maybe involved in the proposed movement of the flexible tether of the iron–sulfur proteinduring catalysis.  相似文献   

8.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

9.
There are now four structures of vertebrate mitochondrial bc 1 complexes available in theprotein databases and structures from yeast and bacterial sources are expected soon. Thisreview summarizes the new information with emphasis on the avian cytochrome bc 1 complex(PDB entries 1BCC and 3BCC). The Rieske iron–sulfur protein is mobile and this has beenproposed to be important for catalysis. The binding sites for quinone have been located basedon structures containing inhibitors and, in the case of the quinone reduction site Qi, thequinone itself.  相似文献   

10.
The assembly of two deletion mutants of the Rieske iron-sulfur protein into the cytochrome bc 1 complex was investigated after import in vitro into mitochondria isolated from a strain of yeast, JPJ1, from which the iron-sulfur protein gene (RIP) had been deleted. The assembly process was investigated by immunoprecipitation of the labeled iron-sulfur protein or the two deletion mutants from detergent-solubilized mitochondria with specific antisera against either the iron-sulfur protein or the bc 1 complex (complex III) [Fu and Beattie (1991). J. Biol. Chem. 266, 16212–16218]. The deletion mutants lacking amino acid residues 55–66 or residues 161–180 were imported into mitochondria in vitro and processed to the mature form via an intermediate form. After import in vitro, the protein lacking residues 161–180 was not assembled into the complex, suggesting that the region of the iron-sulfur protein containing these residues may be involved in the assembly of the protein into the bc 1 complex; however, the protein lacking residues 55–66 was assembled in vitro into the bc 1 complex as effectively as the wild type iron-sulfur protein. Moreover, this mutant protein was present in the mitochondrial membrane fraction obtained from JPJ1 cells transformed with a single-copy plasmid containing the gene for this protein lacking residues 55–66. This deletion mutant protein was also assembled into the bc 1 complex in vivo, suggesting that the hydrophobic stretch of amino acids, residues 55–66, is not required for assembly of the iron-sulfur protein into the bc 1 complex; however, this association did not lead to enzymatic activity of the bc 1 complex, as the Rieske FeS cluster was not epr detectable in these mitochondria.  相似文献   

11.
Dicyclohexylcarbodiimide (DCCD) binds covalently to an acidic amino acid located in the cd loop connecting membrane-spanning helices C and D of cytochrome b resulting in an inhibition of proton translocation in the cytochrome bc 1 complex with minimal effects on the steady state rate of electron transfer. Single turnover studies performed with the yeast cytochrome bc 1 complex indicated that the initial phase of cytochrome b reduction was inhibited 25–45% in the DCCD-treated cytochrome bc 1 complex, while the rate of cytochrome c 1 reduction was unaffected. Simulations by molecular modeling predict that binding of DCCD to glutamate 163 located in the cd2 loop of cytochrome b of chicken liver mitochondria results in major conformational changes in the protein. The conformation of the cd loop and the end of helix C appeared twisted with a concomitant rearrangement of the amino acid residues of both cd1 and cd2 loops. The predicted rearrangement of the amino acid residues of the cd loop results in disruptions of the hydrogen bonds predicted to form between amino acid residues of the cd and ef loops. Simultaneously, two new hydrogen bonds are predicted to form between glutamate 272 and two residues, aspartate 253 and tyrosine 272. Formation of these new hydrogen bonds would restrict the rotation and protonation of glutamate 272, which may be necessary for the release of the second electrogenic proton obtained during ubiquinol oxidation in the bc1 complex.  相似文献   

12.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
The primary energy conversion (QO) site of the cytochrome bc 1 complex is flanked by bothhigh- and low-potential redox cofactors, the [2Fe–2S] cluster and cytochrome b L, respectively.From the sensitivity of the reduced [2Fe–2S] cluster electron paramagnetic resonance (EPR)spectral g x-band and line shape to the degree and type of QO site occupants, we have proposeda double-occupancy model for the QO site by ubiquinone in Rhodobacter capsulatus membranevesicles containing the cytochrome bc 1 complex. Biophysical and biochemical experimentshave confirmed the double occupancy model and from a combination of these results and theavailable cytochrome bc 1 crystal structures we suggest that the two ubiquinone molecules inthe QO site serve distinct catalytic roles. We propose that the strongly bound ubiquinone,termed QOS, is close to the [2Fe–2S] cluster, where it remains tightly associated with the QOsite during turnover, serving as a catalytic cofactor; and the weaker bound ubiquinone, QOW,is distal to the [2Fe–2S] cluster and can exchange with the membrane Qpool on a time scalemuch faster than the turnover, acting as the substrate. The crystallographic data demonstratesthat the FeS subunit can adopt different positions. Our own observations show that theequilibrium position of the reduced FeS subunit is proximal to the QO site. On the basis of this, wealso report preliminary results modeling the electron transfer reactions that can occur in thecytochrome bc 1 complex and show that because of the strong distance dependence of electrontransfer, significant movement of the FeS subunit must occur in order for the complex to beable to turn over at the experimental observed rates.  相似文献   

14.
The ubiquinol: cytochrome c oxidoreductase, or the bc 1 complex, is a key component ofboth respiratory and photosynthetic electron transfer and contributes to the formation of anelectrochemical gradient necessary for ATP synthesis. Numerous bacteria harbor a bc 1 complexcomprised of three redox-active subunits, which bear two b-type hemes, one c-type heme, andone [2Fe–2S] cluster as prosthetic groups. Photosynthetic bacteria like Rhodobacter speciesprovide powerful models for studying the function and structure of this enzyme and are beingwidely used. In recent years, extensive use of spontaneous and site-directed mutants and theirrevertants, new inhibitors, discovery of natural variants of this enzyme in various species, andengineering of novel bc 1 complexes in species amenable to genetic manipulations have providedus with a wealth of information on the mechanism of function, nature of subunit interactions,and assembly of this important enzyme. The recent resolution of the structure of variousmitochondrial bc 1 complexes in different crystallographic forms has consolidated previousfindings, added atomic-scale precision to our knowledge, and raised new issues, such as thepossible movement of the Rieske Fe–S protein subunit during Qo site catalysis. Here, studiesperformed during the last few years using bacterial bc 1 complexes are reviewed briefly andongoing investigations and future challenges of this exciting field are mentioned.  相似文献   

15.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

16.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

17.
Structural alignment of the integral cytochrome b 6-SU IV subunits with the solved structure of themitochondrial bc 1 complex shows a pronounced asymmetry. There is a much higher homology onthe p-side of the membrane, suggesting a similarity in the mechanisms of intramembrane andinterfacial electron and proton transfer on the p-side, but not necessarily on the n-side. Structuraldifferences between the bc 1 and b 6 f complexes appear to be larger the farther the domain or subunitis removed from the membrane core, with extreme differences between cytochromes c 1 and f. Aspecial role for the dimer may involve electron sharing between the two hemes b p, which is indicatedas a probable event by calculations of relative rate constants for intramonomer heme b p hemeb n, or intermonomer heme b p heme b p electron transfer. The long-standing observation offlash-induced oxidation of only 0.5 of the chemical content of cyt f may be partly a consequence ofthe statistical population of ISP bound to cyt f on the dimer. It is proposed that the p-side domainof cyt f is positioned with its long axis parallel to the membrane surface in order to: (i) allow itslarge and small domains to carry out the functions of cyt c 1 and suVIII, respectively, of the bc 1complex, and (ii) provide maximum dielectric continuity with the membrane. (iii) This positionwould also allow the internal water chain (proton wire) of cyt f to serve as the p-side exit portfor an intramembrane H+ transfer chain that would deprotonate the semiquinol located in themyxothiazol/MOA-stilbene pocket near heme b p. A hypothesis is presented for the identity of theamino acid residues in this chain.  相似文献   

18.
The mitochondrial cytochrome bc1 complex is a multifunctional membrane protein complex. It catalyzes electron transfer, proton translocation, peptide processing, and superoxide generation. Crystal structure data at 2.9 A resolution not only establishes the location of the redox centers and inhibitor binding sites, but also suggests a movement of the head domain of the iron-sulfur protein (ISP) during bc1 catalysis and inhibition of peptide-processing activity during complex maturation. The functional importance of the movement of extramembrane (head) domain of ISP in the bc1 complex is confirmed by analysis of the Rhodobacter sphaeroides bc1 complex mutants with increased rigidity in the ISP neck and by the determination of rate constants for acid/base-induced intramolecular electron transfer between [2Fe-2S] and heme c1 in native and inhibitor-loaded beef complexes. The peptide-processing activity is activated in bovine heart mitochondrial bc1 complex by nonionic detergent at concentrations that inactivate electron transfer activity. This peptide-processing activity is shown to be associated with subunits I and II by cloning, overexpression and in vitro reconstitution. The superoxide-generation site of the cytochrome bc1 complex is located at reduced bL and Q*-. The reaction is membrane potential-, and cytochrome c-dependent.  相似文献   

19.
Summary A cytochrome bc 1-complex of Rs. rubrum was isolated and the three subunits were purified to homogeneity. The N-terminal amino acid sequence of the purified subunits was determined by automatic Edman degradation. The pet genes of Rhodospirillum rubrum coding for the three subunits of the cytochrome bc 1-complex were isolated from a genomic library of Rs. rubrum using oligonucleotides specific for conserved regions of the subunits from other organisms and a heterologous probe derived from the genes for the complex of Rb. capsulatus. The complete nucleotide sequence of a 5500 by SalI/SphI fragment is described which includes the pet genes and three additional unidentified open reading frames. The N-terminal amino acid sequence of the isolated subunits was used for the identification of the three genes. The genes encoding the subunits are organized as follows: Rieske protein, cytochrome b, cytochrome c 1. Comparison of the N-terminal protein sequences with the protein sequences deduced from the nucleotide sequence showed that only cytochrome c 1 is processed during transport and assembly of the three subunits of the complex. Only the N-terminal methionine of the Rieske protein is cleaved off. The similarity of the deduced amino acid sequence of the three subunits to the corresponding subunits of other organisms is described and implications for structural features of the subunits are discussed.Abbreviations BSA bovine serum albumin - SDS sodium dodecylsulphate - Rs Rhodospirillum - Rb Rhodobacter - Pc Paracoccus - Rps Rhodopseudomonas The nucleotide sequence reported in this paper has been submitted to the GenBank/EMBL Data Bank with accession number X55387  相似文献   

20.
Previously, we reported that the carboxyl-reacting reagent DCCD, and its fluorescent derivative NCD-4 binds covalently to aspartate-160 localized in amphipathic helix cd of the CD loop connecting membrane-spanning helices C and D of cytochrome b (Wang et al., 1995). We have investigated the fluorescent properties of NCD-4 to probe possible changes in the cd helix resulting from the binding of exogenous ubiquinol analogues to the bc 1 complex. Preincubation of the bc 1 complex with the reduced substrate analogues, DQH2, DBH2, and Q6H2 resulted in 20–40% increase in the fluorescence emission intensity of NCD-4 and a 10–20% increase in the binding of [14C]DCCD to the bc 1 complex. By contrast, preincubation with the oxidized analogues DQ, DB, and Q6 resulted in a 20–40% decrease in the fluorescence emission intensity of NCD-4 and a 20–40% decrease in the binding of [14C]DCCD to the bc 1 complex. Moreover, addition of the reduced ubiquinols to the bc 1 complex preincubated with NCD-4 resulted in a blue shift in the fluorescence emission spectrum. In addition, incubation of the cytochrome bc 1 complex reconstituted into proteoliposomes with both reduced and oxidized ubiquinol analogues resulted in changes in the quenching of NCD-4 fluorescence by CAT-16, the spin-label probe that intercalates at the membrane surface. These results indicate that the addition of exogenous ubiquinol to the bc 1 complex may result in changes in the cd helix leading to a more hydrophobic environment surrounding the NCD-4 binding site. By contrast, preincubation with the inhibitors of electron transfer through the bc 1 complex had no effect on the binding of NCD-4 to the bc 1 complex or on the fluorescent emission spectra, which suggests that the binding of the inhibitors does not result in changes in the environment of the NCD-4 binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号