首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental cycle of Nostoc muscorum, a nitrogen-fixing blue-green alga, is controlled by the spectral quality of illumination. Red light with peak activity at 650 mμ induces development of filaments from a nonfilamentous (aseriate) stage of the life cycle. Red-light photoinduction is reversed by simultaneous or subsequent exposure to light from a broad band in the green region of the spectrum. Photoreversibility of the red-light induction, by green light, decays very slowly, remaining at an appreciable level for over 24 hr after the primary stimulus. Allophycocyanin is indicated to be the photoreceptor for red-light induction. One or more phycoeythrins may operate as photoreceptors for reversal of induction. The dosage response and wavelength dependence of developmental photocontrol in Nostoc muscorum A indicate that a nonphotosynthetic mechanism is involved in both developmental photoinduction and its photoreversal.  相似文献   

2.
The developmental cycle of Nostoc muscorum, a nitrogen-fixing blue-green alga, is controlled by the spectral quality of illumination. Red light with peak activity at 650 mμ induces development of filaments from a nonfilamentous (aseriate) stage of the life cycle. Red-light photoinduction is reversed by simultaneous or subsequent exposure to light from a broad band in the green region of the spectrum. Photo-reversibility of the red-light induction, by green light, decays very slowly, remaining at an appreciable level for over 24 hr after the primary stimulus. Allophycocyanin is indicated to be the photoreceptor for red-light induction. One or more phyco-erythrins may operate as photoreceptors for reversal of induction. The dosage response and wavelength dependence of developmental photocontrol in Nostoc muscorum A indicate that a nonphotosynthetic mechanism is involved in both developmental photoinduction and its photor ever sal.  相似文献   

3.
&#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):257-261
利用发光二极管(LED)作为光源,以冷百荧光灯光作为对照,研究不同光质红光637 nm、绿光529 nm、蓝光453 nm、白光(400700) nm对念珠藻葛仙米生长和生理生化特性的影响。结果表明:在培养前期,红光促进藻蓝蛋白合成,而藻红蛋白合成受抑制;蓝光和绿光则促进藻蓝蛋白合成。在培养后期,红光处理有利于叶绿素a和类胡萝卜素积累,其含量分别达到干重的1.33%和0.24%;绿光、白光和冷白荧光培养物的相应色素的含量均约占1.0%和0.16%;蓝光培养物的相应色素含量分别仅为0.45%和0.11%。红光培养物的氨基酸含量达干重的23.1%,是对照的1.58倍。除蓝光外其他光质对还原糖的含量影响无显著差异。在培养过程中LED白光和冷白荧光培养物的平均相对生长速率分别约为其他色光培养物的1.3和1.5倍。    相似文献   

4.
Morphological characteristics of an edible terrestrial cyanobacterium Nostoc flagelliforme in liquid suspension cultures under photoautotrophic conditions are presented. Different cell forms alternated in a regular manner during the experimentation period (30 d). N. flagelliforme exhibited a very complex life cycle in terms of colony morphology, including mainly 4 different colony morphological forms, viz. hormogonia, filaments, seriate colonies and aseriate colonies. Under laboratory conditions it formed spherical colonies on solid media but not threadlike colonies as it did under natural conditions. The overall life span of the alga was not altered by the existence of different nitrogen sources in the media despite the depression of some cell forms or colony morphologies. Compared with growth on the medium with urea and ammonium as nitrogen sources, the alga on standard medium had a short period of hormogonia and aseriate colony, suggesting that both ammonium and urea could stimulate the formation of hormogonia, at the same time inhibiting the formation of heterocystous cells. The new information on the growth and morphology of N. flagelliforme could be potentially used for the scale-up or field cultivation.  相似文献   

5.
Colored light modifies the relative concentration of chlorophyll-forms of the diatom Phaeodactylum tricornutum compared to white-light control. No change in the ratio carotenoids/chlorophylls was observed after 4 days exposure to green light (max: 530 nm), blue light (max: 470 nm) or red light ( > 650 nm) of same intensity.However, the absorption spectra were modified, the content in Ca 684, Ca 690, Ca 699 forms increased in red and green light cultures and photosynthetic unit size of PS II decreased by 30% in green and blue light cultures.Fluorescence emission and fluorescence excitation spectra according to the Butler and Kitajima method (1975) were carried out for each culture. Ca 669 form was predominant in the two photosystems. The newly appeared far red forms fluoresce at 715 nm like PS I forms.We conclude that these new forms originated in a rearrangement of PS II forms. They do not transmit excitation energy to reaction center of PS I and are disconnected from the other chlorophyll-forms of the photosynthetic antennae.Abbreviations ABS absorption - Ca chlorophyll-complex - chla chlorophyll a - chl c chlorophyll c - chl t total chlorophylls - D.C.M.U. 3-(3, 4 dichlorophenyl) 1-diméthyl-urea - dv division - F fluorescence - PS I and PS II photosystem I and photosystem II  相似文献   

6.
Morphological changes of Nostoc muscorum A were studied withspecial reference to growth conditions. According to Lazaroff(1973), N. muscorum A has a life cycle dependent on the lightconditions; cells of a coccoid form grow in the dark (aseriatestage) while cells of a filamentous form grow in light (seriatestage). The conversion from the aseriate to the seriate stageis photocontrolled by red stimulation and green suppression.We reexamined (i) the light effect on the morphological formsof N. muscorum A growing under various conditions, includingN2-fixing and non-fixing, and (ii) the light effect on the controlof the aseriate to seriate conversion in the dark in relationto the effect on the dark growth. Results for (i) indicatedthat cell forms did not necessarily depend on the light butwere determined by growth conditions; under conditions sufficientfor supporting rapid growth, cells grew at the seriate stage,and under insufficient conditions, at the aseriate stage. Thelight effect to induce and support filamentous growth was explainedas the photosynthetic energy supply for improving the growth.Results for (ii) revealed that red light induced the dark aseriateto seriate conversion and at the same time enhanced the darkgrowth after the illumination. Green light suppressed both theconversion and the dark growth stimulated by red light. Thered-green photocontrol of the dark conversion was explainedby the enhancing effect of red light and the inhibitory effectof green light on the dark growth. Morphological changes betweencoccoid and filamentous forms of N. muscorum A are probablynot obligatory for continued growth. 1Present address: Department of Botany, Faculty of Science,Kyoto University, Kitashirakawa, Kyoto 606, Japan. (Received September 22, 1980; Accepted December 6, 1980)  相似文献   

7.
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kützing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.  相似文献   

8.
研究重点针对雨生红球藻绿色游动细胞的增殖培养阶段,分析了在利于细胞增殖的红光条件下,几种培养方式的调整对增殖过程和细胞活力的影响。结果显示:(1)在红光下,增殖平台期维持时间长,细胞活力稳定,细胞中性脂无累积,但进入平台期前,细胞中性脂有规律波动,进入平台期后相对稳定;通过更新率为20%的半连续培养,细胞数产出较批次培养提高57%;半连续培养中细胞呈现胁迫调节的时间较批次培养晚。随着培养时间增加,半连续培养下细胞营养盐吸收能力降低。(2)初始接种密度与细胞增殖速率及细胞光合活力呈负相关:初始密度低的细胞增殖速率较高,细胞光合作用活力高。(3)在培养过程中添加CO2时,最大密度均有提高,达6.0105 cells/mL,较无添加组提高54%;细胞分裂速率均有提高,但红光下较白光下增殖速率高(分别为0.223/d和0.198/d);添加CO2降低培养液pH,利于维持适宜增殖的pH环境。叶绿素荧光参数以及细胞粒径在红光和白光下有显著差异:红光下,Fv/Fm显著高于白光下;红光下补充CO2显著减小细胞粒径,而白光下粒径无显著变化。研究结果显示,在红光下,采用间断式半连续培养补充CO2培养绿色游动细胞,有利于提升细胞活力与产出。  相似文献   

9.
Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae‐based modules of life support systems under low to saturating light intensities and double‐sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments.  相似文献   

10.
The influence of red, blue, green, and white light on growth and photosynthetic rates, carbon metabolism, and rates of release of extracellular compounds in the freshwater alga Chlamydomonas reinhardtii Dangeard was examined. Relative growth constants were 0.28, 0.32, 0.40, and 0.41 in green, white, blue, and red light, respectively. Photosynthetic rates were higher in white, blue, or red than in green light of the same intensity. More than 66% of the 14CO2 assimilated by cells grown under blue or green light was incorporated into the ethanol-insoluble fraction, compared with about 50% in cells grown under white or red light. The percentage of sugars in this fraction was significantly higher in cells grown under green or red light than in cells cultured in white or blue light, while the percentage of proteins was highest in blue light. Light quality also influenced the composition of the ethanol-soluble fraction. The percentage of organic acids was highest in cells grown in green and white light, while amino acids were highest in blue and green cultures. The percentage of ethanol-soluble sugars was greatest in cultures grown in blue and red light. The percentage release of dissolved organic carbon into the medium was highest in white light and lowest in blue or red light. The nature of the extracellular products varied according to the quality of light under which the cells were cultured, but had no consistent relation to the nature or concentration or components in the ethanol-soluble fraction.  相似文献   

11.
Summary Trichomes of Microcoleus vaginatus, a motile blue-green alga of the family Oscillatoriaceae, were studied by light and electron microscopy in an effort to determine the sites of trichome breakage during production of hormogonia.According to the evidence presented herein, transcellular breakage of trichomes is the only mechanism of hormogonium production in M. vaginatus. Tearing of the murein sacculus appears to be necessary and sufficient for transcellular breakage to ensue. As Fuhs and earlier investigators have correctly claimed, this process always involves the death of the cell whose wall is torn.When trichomes of M. vaginatus break across cells to produce hormogonia, the murein sacculus usually tears along a circumferential set of junctional pores. This particular mechanism of trichome breakage is not universal among members of the family Oscillatoriaceae.This report is based on a thesis submitted in partial fulfillment of the requirements for a Ph. D. degree in Biology at Harvard University.  相似文献   

12.
Verticillium agaricinum (Link) Corda, grown in a yeast extract-sucrose medium, conidiated abundantly in darkness after irradiation with near ultraviolet (290–400 nm) for 15 min or blue light (400–550 nm) for 60 min. Few conidia were formed in total darkness. Exposure to 30 min of near ultraviolet light suppressed conidiation. Conidiation was also suppressed by phosphate in excess of 10−4 M irrespective of light condition. After irradiation with near ultraviolet light for more than 30 min, there was a cessation of growth and a change in colony color from yellow to reddish. The color does not appear to be due to a carotenoid because the colonies turned from red to yellow when covered with acid. At pH lower than 6.0 the pigment has an absorption maximum around 390 nm, whereas at higher pH it is around 540 nm. Thus, it appears that irradiation of V. agaricinum with near ultraviolet may cause an increase in pH, which in turn produces the change of colony color from yellow to reddish.  相似文献   

13.
Hairy root cultures of Artemisia annua L were cultivated for 30 days under either white, red, blue, yellow or green light. Red light at 660 nm gave the highest biomass of hairy roots (5.73 g dry wt cells l–1 medium) and artemisinin content (31 mg arteminsinin g–1 dry cells) which were, respectively, 17% and 67% higher than those obtained under white light.  相似文献   

14.
The absorption maximum of the far-red absorbing form of phytochrome in the difference spectrum for phototransformation (Pfr max) was investigated in vivo and in in vitro pellets from dark grown Hordeum vulgare L. primary leaves. Exposure of pellets in Honda medium from tissue pre-irradiated with red light to far red light gave a Pfr max of 734 nm, a slightly longer wavelength than was seen in vivo (730 nm). After incubation as the red absorbing form of phytochrome (Pr) for 2 h at 0° C irradiation with red light showed that Pfr max had shifted to shorter wavelength (716 nm) in Honda medium. Further incubation as Pfr for 2 h at 0° C and irradiation with far red light showed that Pfr max had shifted to longer wavelength (726 nm). Similar shifts were also seen in other media, although the peak positions were different. Phytochrome remained pelletable throughout these experiments and Pfr max is compared to that of soluble phytochrome in similar media. The results are interpreted as indicating changes in molecular environment of the putative phytochrome membrane receptor site and that Pfr max can be used to probe the nature of this binding.Abbreviations D Dark - EDTA Ethylene diamine tetra-acetic acid - F far red light - MOPS N-morpholino-3-propane-sulphonic acid - P Phytochrome - Pr red absorbing form of P - Pfr far red absorbing form of P - Pfr max wavelength maximum of Pfr absorbance in a phototransformation difference spectrum - R red light  相似文献   

15.
Cell growth, flavonoids biosynthesis and L-phenylalanine ammonia-lyase (PAL) activity were studied in callus cultures of Saussurea medusa Maxim. under different types of spectral radiance. After 21 days, red light significantly improved the callus growth, but inhibited the biosynthesis of flavonoids in callus cultures. However, blue light was found to enhance the biosynthesis of flavonoids, although callus growth under this spectrum was comparable with that under white and other coloured spectra, such as green and yellow. The accumulation of flavonoids in callus cultures was related to the PAL activity, which was found to be stimulated by the spectral composition of irradiation.  相似文献   

16.
Photodynamic treatment by the cationic TMPyP photosensitizer was undertaken on the multiple antibiotic-resistant bacteria Acinetobacter baumannii and Escherichia coli. Total eradication of the bacterial cultures was determined immediately after initiation of illumination when these bacteria were treated with 5, 10, 15, 20-tetra (4-N methylpyridyl)porphine (TMPyP) at a concentration of 29.4 μmol/L and illuminated by blue, green, or red light. Total eradication of both bacteria was obtained also after treatment of bacterial cultures with 3.7 μmol/L TMPyP and illumination with blue light (400–450 nm). On the other hand, an 8- or 16- to 20-fold higher light intensity, respectively, was required for total eradication upon illumination with green (480–550 nm) or red light (600–700 nm). A 407-nm blue light only 7 and 9 joules/cm2, respectively, was needed for total eradication of both bacteria even at a concentration of 3.7 μmol/L TMPyP. X-ray-linked microanalysis demonstrated loss of potassium and a flood of sodium and chloride into the cells, indicating serious damage to the cytoplasmic membrane. Transmission electron microscopy (TEM) revealed structural changes and damage to the membrane of treated E. coli. In A. baumannii-treated cells, mesosomes and black dots that resemble aggregation of polyphosphate polymers could be seen. DNA breakage appeared only after a long period of illumination, when the bacterial cell was no longer viable. It can be concluded that cytoplasmic membrane damage and not DNA breakage is the major cause for bacterial death upon photosensitization. Received: 13 October 2000 / Accepted: 17 November 2000  相似文献   

17.
瓢虫的趋光性反应研究   总被引:3,自引:0,他引:3  
以六斑月瓢虫Menochilus sexmaculata Fabricius和狭臀瓢虫Coccinella transversalis Fabricius为例,研究了瓢虫对不同光质(波长)的趋光性反应。在室内分别测定了六斑月瓢虫和狭臀瓢虫对5种发光二极管(LED)光波的趋性,以及在田间挂板(佳多)测定了瓢虫对色板的选择趋性。室内测定结果表明,瓢虫对黄色和白色LED光波的选择趋性显著高于与其它颜色;田间挂板试验表明,黄色对瓢虫的诱杀作用最强。综合分析,黄色对瓢虫有强烈的吸引作用,建议在使用黄板进行田间监测和防治时应考虑对天敌瓢虫的诱杀作用。  相似文献   

18.
Summary We have isolated four distinct colony types of the fungus Tolypocladium inflatum, the producer of the immunosuppresive agent cyclosporin A: morphologically normal white, red, and orange colonies and morphologically diverse tiny brown colonies. In liquid cultures, white normal and brown colonies developed into yellow broths. The broth of the brown colony had a low final pH and low cyclosporin production, whereas orange and red colonies had dark brown and even black broths with higher final pH and high cyclosporin production. The specific production of cyclosporin A by the red colony was three times that of the white normal colonies. Offprint requests to: S. N. Agathos  相似文献   

19.
Cucumber (Cucumis sativus L. cultivar "Changchun Mici") seedlings were cultured in Hoagland solution under irradiation with different light spectra (8 h per day) for 20 days. The red light (λmax 658 nm, λ1/2 25 nm), blue light (λmax 450 nm, λ1/2 43 nm) and white fluorescent light possessed the same fluent rate (20 μmol· m-2·s-1 ). The experimental results showed that chlorophyll content of the leaves grown under white light was 7 % and 22.4% higher than those in red and blue light, respectively. Compared with white and blue light, red light induced a lower Chl a/b ratio and a higher level of Chl b in the cucumber leaves. Measurements of the low temperature (77 K) fluorescence emission spectra and kinetics of Chl a fluorescence induction of the leaves proved that the leaves grown under red light expressed the highest PSⅡ and the lowest PSⅠactivities while the leaves under blue light had the lowest PSⅡand the highest PSⅠ activities. The O2 evolution rate of red light-grown leaves was 44.9% higher than that of the white light-grown leaves, while blue light effect was similar to that of white in respect of O2 evolution. It is concluded that light quality is an important factor in regulating the development and activities of PSⅡ and PSⅡand the O2 evolution of photosynthesis in cucumber leaves.  相似文献   

20.
Periodic cell divisions were induced in gametophytes of Pteridium aquilinum by daily irradiation with white light. In white-dark cycles, the rate of cell division was promoted by increased time in white light; cell elongation was not affected. The time of transition to two-dimensional growth (days to 5% 2-D) was closely associated with the mitotic rate. For white-red cycles, the rate of elongation was controlled by the intensity of red light (wavelengths over 550 nm). This increased elongation delayed the initiation of 2-D development. In both cases the rate of transition to 2-D growth was correlated with the amount of elongation per division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号