首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of various phospholipase A2 and protein kinase inhibitors on the arachidonic acid liberation in bovine platelets induced by the protein kinase activator 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. TPA stimulates arachidonic acid release mainly by activating group IV cytosolic PLA2 (cPLA2), since inhibitors of this enzyme markedly inhibited arachidonic acid formation. However, group VI Ca2+-independent PLA2 (iPLA2) seems to contribute to the arachidonic acid liberation too, since the relatively specific iPLA2 inhibitor bromoenol lactone (BEL) decreased arachidonic acid generation in part. The pronounced inhibition of the TPA-induced arachidonic acid release by the protein kinase C (PKC) inhibitors GF 109203X and Ro 31-82220, respectively, and by the p38 MAP kinase inhibitor SB 202190 suggests that the activation of the PLA2s by TPA is mediated via PKC and p38 MAP kinase.  相似文献   

2.
Phospholipid signalling is mediated by phospholipid breakdown products generated by phospholipases. The enzymes from animals and plants generating known or potential lipid-derived second messengers are compared. Plants possess a phospholipase C and a phospholipase A2 both of which are agonist-activated. These agonists (auxin, elicitors, perhaps others) bind to the external surface of the plasma membrane. The target enzyme for potential plant lipid-derived second messengers is lipid-activated protein kinase but the possibility that other enzymes may be also lipid-modulated should not be precluded.Abbreviations DAG diacylglycerol - CDPK calmodulin-like domain protein kinase - PLA2 phospholipase A2 - PLC phospholipase C - PLD phospholipase D - PKC protein kinase C - PS phosphatidylserine  相似文献   

3.
Recently, we have isolated a cDNA encoding a muscarinic acetylcholine receptor (mAChR) from Caenorhabditis elegans. To investigate the regulation of phospholipase D (PLD) signaling via a muscarinic receptor, we generated stable transfected Chinese hamster ovary (CHO) cells that overexpress the mAChR of C. elegans (CHO-GAR-3). Carbachol (CCh) induced inositol phosphate formation and a significantly higher Ca(2+) elevation and stimulated PLD activity through the mAChR; this was insensitive to pertussis toxin, but its activity was abolished by the phospholipase C (PLC) inhibitor U73122. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after CCh treatment. The CCh-induced PLD activation and tyrosine phosphorylation were significantly reduced by the protein kinase C (PKC) inhibitor calphostin C and down-regulation of PKC and the tyrosine kinase inhibitor genistein. Moreover, the Ca(2+)-calmodulin-dependent protein kinase II (CaM kinase II) inhibitor KN62, in addition to chelation of extracellular or intracellular Ca(2+) by EGTA and BAPTA/AM, abolished CCh-induced PLD activation and protein tyrosine phosphorylation. Taken together, these results suggest that the PLC/PKC-PLD pathway and the CaM kinase II/tyrosine kinase-PLD pathway are involved in the activation of PLD through mAChRs of C. elegans.  相似文献   

4.
In previous studies we demonstrated the triggering of the phospholipase C (PLC) pathway during the activation of an Ag-specific human CD4+ T lymphocyte clone by a mitogenic pair of CD2 (X11,D66) mAb. Similar conditions were applied to investigate a possible involvement of a phospholipase A2 (PLA2) acting as an additional alternative pathway during human T cell activation. Our results show that arachidonic acid or its derivatives are released after CD2 triggering. This release is largely independent of PLC activation and is mediated by a PLA2 because: 1) phosphatidylcholine is the preferential source of [3H]arachidonate release; 2) [3H]arachidonic acid release and phosphatidylcholine hydrolysis are blocked by two inhibitors of solubilized PLA2, mepacrine, and 4-p-bromophenacylbromide; and 3) we evidenced a PLA2 activity in cell homogenates. Extracellular calcium appears to play a critical role because the effects of CD2 mAb were inhibited in a Ca2(+)-depleted medium. In contrast, protein kinase C is not implicated since PMA, a protein kinase C activator, neither stimulated arachidonic acid release nor modulated CD2-induced arachidonic acid release. Cyclic AMP which has been proved to regulate the activity of the PLC in T lymphocytes does not appear to play an important role in the regulation of PLA2 activity since PGE2 has only a minimal effect on [3H]-arachidonate release. Altogether, these findings suggest that CD2 triggering stimulates a PLA2 activity in T lymphocytes via an extracellular Ca2(+)-dependent PLC protein kinase C independent mechanism.  相似文献   

5.
6.
In the present study we demonstrate that interleukin 1 (IL 1) and phorbol 12-myristate 13-acetate (PMA) stimulate collagenase production by bovine chondrocytes in monolayer culture. Since it has been well established that PMA stimulates protein kinase C (PKC), we examined whether IL 1 and PMA also stimulate PKC in chondrocytes. In agreement with other studies, PMA induced the translocation of PKC, reflecting PKC activation by PMA. In contrast, IL 1 did not induce the translocation of PKC. Both IL 1 and PMA stimulated the release of [14C]arachidonic acid from chondrocyte phospholipids, suggesting that both agents stimulate phospholipase A2 (PLA2). Concomitantly, IL 1 and PMA also induced a pronounced increase in the production of PGE2. Pre-incubation of chondrocytes with staurosporine, a PKC inhibitor, did not affect the stimulation of collagenase production by IL 1 and only minimally that induced by PMA. Similarly, high concentrations of staurosporine did not inhibit prostaglandin E2 (PGE2) production induced by IL 1 or PMA. These data show that IL 1 and PMA stimulate the PLA2 pathway and collagenase production, however, these processes can occur in the absence of PKC activation.  相似文献   

7.
8.
In the present study, we investigated how chrysotile-stimulated macrophages generate superoxide using murine peritoneal macrophages, with special attention to the modulatory role of phospholipase A(2) (PLA(2)). We examined the effects of the following inhibitors and antagonists for signaling molecules on the superoxide anion (O(-)(2)) production of chrysotile-stimulated macrophages: p-bromophenacyl bromide (pBPB) and mepacrine for PLA(2); islet-activating protein (IAP) for G-protein; H-7 for protein kinase C (PKC); AA861 for 5-lipoxygenase (5-LO); indomethacin for cyclo-oxygenase (COX); ETYA for both 5-LO and COX; hexanolamine PAF for platelet-activating factor (PAF). The PLA(2) and PKC inhibitors effectively inhibited the chrysotile-induced superoxide anion production of macrophages, but not the G-protein inhibitor, the 5-LO and COX inhibitors, and the PAF antagonist. We also examined the effects of the PLA(2) inhibitors on macrophages stimulated by phorbol 12-myristate 13-acetate (PMA) which directly activates PKC. The two structurally different PLA(2) inhibitors showed differential effects on the PMA-induced superoxide generation: pBPB inhibited it but mepacrine did not. These results suggested that (1) PLA(2) and PKC modulate the chrysotile-induced O(2) production, and (2) two different kinds of PLA(2) work upstream and downstream of PKC, but (3) G-protein, 5-LO and COX metabolites, and PAF have no modulatory role in the reaction.  相似文献   

9.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

10.
We found previously that stimulation of c-fos and c-myc mRNA expression are early events in hydrogen peroxide-induced growth in rat aortic smooth muscle (RASM) cells. In the present study, we investigated the role of phospholipase A2 (PLA2) and protein kinase C (PKC) in mediating hydrogen peroxide-induced c-fos mRNA expression in RASM cells. Mepacrine and p-bromophenacylbromide, potent inhibitors of PLA2 activity, blocked hydrogen peroxide-induced c-fos mRNA expression. Arachidonic acid, a product of PLA2 activity, stimulated the expression of c-fos mRNA with a time course similar to that of hydrogen peroxide. PKC down-regulation attenuated both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression by 50%. Nordihydroguaiaretic acid (a lipoxygenase-cytochrome P450 monooxygenase inhibitor) significantly inhibited both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression, whereas indomethacin (a cyclooxygenase inhibitor) had no effect. Together, these findings indicate that 1) hydrogen peroxide-induced c-fos mRNA expression is mediated by PLA2-dependent arachidonic acid release, 2) both PKC-dependent and independent mechanisms are involved in hydrogen peroxide-induced expression of c-fos mRNA and 3) arachidonic acid metabolism via the lipoxygenase-cytochrome P450 monooxygenase pathway appears to be required for hydrogen peroxide-induced expression of c-fos mRNA.  相似文献   

11.
We show that epigallocatechin-3 gallate (EGCG), a major component of green tea, stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-gamma1 mutant, which is dependent on intracellular or extracellular Ca(2+), with the possible involvement of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). EGCG induced translocation of PLC-gamma1 from the cytosol to the membrane and PLC-gamma1 interaction with PLD1. EGCG regulates the activity of PLD by modulating the redox state of the cells, and antioxidants reverse this effect. Moreover, EGCG-induced PLD activation was reduced by PKC inhibitors or down-regulation of PKC. Taken together, these results show that, in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving changes in the redox state that stimulates a PLC-gamma1 [Ins(1,4,5)P(3)-Ca(2+)]-CaM kinase II-PLD pathway and a PLC-gamma1 (diacylglycerol)-PKC-PLD pathway.  相似文献   

12.
The primary purpose of this investigation was to determine the relationship between phospholipase C (PLC) and diacylglycerol (DAG) sensitive protein kinase C isoforms in insulin signaling in skeletal muscle. Using an in vitro preparation of rat soleus muscle we found that insulin (0.6 nM) stimulated glucose transport was inhibited approximately 20 and 25% by the PKC inhibitor GF109203X and the phospholipase C inhibitor U73122 respectively (p<0.05). The combined effects of these inhibitors were no greater than the inhibitory effects of either compound alone. Western blot analysis revealed that insulin induced a redistribution of PKC beta II from the cytosol to the membrane that was reversed in the presence of GF109203X (1 microM) and U73122 (20 microM). Similarly, U73122 and GF109203X reversed the insulin induced increase in membrane associated phosphorylated (ser 660) PKC beta II. The novel finding of this investigation is that insulin induces an increase in PKC beta II translocation and phosphorylation through a U73122 sensitive pathway in quantatively the most important insulin responsive tissue, skeletal muscle. Furthermore, these results imply that PKC beta II may be one of the DAG sensitive isoforms involved in glucose transport.  相似文献   

13.
Phagocytosis, the process by which leukocytes recognize and destroy invading pathogens, is essential for host defense. The binding of foreign organisms to phagocytic leukocytes initiates a complex signaling cascade which ultimately results in the entrapment and destruction of the pathogen. The signal transduction pathway mediating phagocytosis is the subject of intense investigation and is known to include protein tyrosine kinases, GTP-binding proteins, protein kinase C (PKC), actin polymerization and membrane movement. A rapidly expanding body of evidence suggests that phospholipases play an integral role in phagocytosis by generating essential second messengers. Here we review the data linking activation of phospholipase A2 (PLA2), phospholipase C (PLC) phospholipase D (PLD), and phosphoinositide 3-OH kinase (PI(3)K) to antibody (IgG)-mediated phagocytosis. Evidence is presented that (1) PLA2-derived arachidonic acid (AA) stimulates NADPH oxidase and membrane redistribution during phagocytosis, (2) the inositol-3,4,5-triphosphate (IP3) and diacylglycerol (DAG) products of PLC activate NADPH oxidase and PKC, and (3) sequential activation of PLD and phosphatidic acid phosphohydrolase may provide an alternative pathway for generation of DAG. Additionally, considerable evidence exists that wortmannin, a PI(3)K inhibitor, depresses phagocytosis. This finding is discussed in the context of the extensive effects PI(3)K products have on endocytosis and exocytosis and the potential role of membrane redistribution in phagocytosis. Finally, a model is presented which integrates data obtained from a variety of phagocytic systems and illustrates potential interactions that may exist between phospholipase-derived second messengers and signaling events required for phagocytosis.  相似文献   

14.
Macrophages are activated by a variety of microbial and cytokine stimuli. One feature of activation is the induction of class II Ag (Ia) on the cell surface. To understand the intracellular events that occur during activation, we investigated various agents with intracellular activities, and examined their effects on the induction of Ia. We first noted that several agents that activate protein kinase C (PKC) induced Ia, and that several inhibitors of PKC inhibited Ia induction by IFN-gamma. To directly test whether PKC induced Ia, we microinjected normal peritoneal macrophages with this enzyme and other intracellular mediators, then examined Ia expression. We observed that injection of PKC itself, or of other intracellular proteins thought to participate in the PKC pathway (Ras or phospholipase C gamma) strongly induced Ia expression. The Ia-inducing activity of transforming Ras protein was blocked by kinase inhibitor treatment of cells, suggesting that Ras signal transduction requires kinase activity. On the other hand, components of the protein kinase A pathway (phospholipase A2 and protein kinase A itself) did not induce Ia. Thus, the PKC pathway can control expression of macrophage surface Ia, possibly by regulating the genes of the MHC, and may play many other roles in the activation of macrophages.  相似文献   

15.
We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) activates both phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells and then induces the activation of protein kinase C (PKC). In this study, we investigated the effect of PGF(2alpha) on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein, in these cells. PGF(2alpha) significantly induced the accumulation of HSP27 dose-dependently within the range of 10 nM to 10 microM. PGF(2alpha) stimulated the increase in the levels of mRNA for HSP27. A total of 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, induced the accumulation of HSP27. The stimulative effect of PGF(2alpha) was reduced in the PKC down-regulated cells. Calphostin C, a specific inhibitor of PKC, suppressed the PGF(2alpha)-induced HSP27 accumulation as well as that induced by TPA. HSP27 induction by PGF(2alpha) was reduced by U-73122, a phospholipase C inhibitor, or propranolol, a phosphatidic acid phosphohydrolase inhibitor. PGF(2alpha) and TPA stimulated p42/p44 mitogen-activated protein (MAP) kinase. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, suppressed the induction of HSP27 stimulated by PGF(2alpha) or TPA. PD98059 and calphostin C reduced the levels of mRNA for HSP27 increased by PGF(2alpha). These results indicate that PGF(2alpha) stimulates the induction of HSP27 via p42/p44 MAP kinase activation, which depends on upstream PKC activation in osteoblasts.  相似文献   

16.
Cucurbitacin B (CuB) isolated from Cucumis melo by using a PC12 cell bioassay system exhibited significant nerve growth factor (NGF)‐mimic or NGF‐enhancing activity in PC12 and primary neuron cells. It was also demonstrated pro‐neurogenesis effects in ICR and APP/PS1 mice and improved memory deficit of APP/PS1 mice. Its possible mechanism includes significant induction of the phosphorylation of glucocorticoid receptor (GR), protein kinase C (PKC), phospholipase C (PLC) and inhibition of cofilin. ChemProteoBase profiling, binding assay and cellular thermal shift assay (CETSA) were used to determine the target protein. Results revealed that CuB could affect actin dynamics as an actin inhibitor but did not bind with GR. The protein level of cofilin in PC12 cells after treating 0.3 μM and different temperatures was significantly higher than that of control group. Other neurotrophic signalling pathways, such as TrkA/TrkB, were analysed with specific inhibitors and Western blot. The inhibitors of TrkA, PLC, PKC, Ras, Raf and ERK1/2 significantly decreased the percentage of PC12 cells with neurite outgrowth and shortened the length of neurite outgrowth induced by CuB. CuB significantly induced the phosphorylation of TrkA, ERK and CREB. The phosphorylation of these proteins was obviously decreased by their specific inhibitors. These results suggest that cofilin is a candidate target protein of CuB in PC12 cells and that the GR/PLC/PKC and TrkA/Ras/Raf/ERK signalling pathways play important roles in the neuroprotective effect of CuB.  相似文献   

17.
18.
ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.  相似文献   

19.
ATP is an extracellular signaling molecule that activates specific G protein-coupled P2Y receptors in most cell types to mediate diverse biological effects. ATP has been shown to activate the phospholipase C (PLC)/diacylglycerol/protein kinase C (PKC) pathway in various systems. However, little is known about the signaling events in human endometrial stromal cells (hESCs). The objective of this study was to examine the presence of the P2Y2 receptor and the effects of exogenous ATP on the intracellular mitogen-activated protein kinases (MAPKs) signaling pathway, immediate early genes expression, and cell viability in hESCs. Western blot analysis, gene array analysis, and MTT assay for cell viability were performed. The current study demonstrated the existence of the P2Y2 purinergic receptor in hESCs. UTP and ATP activated MAPK in a dose- and time-dependent manner. Suramin (a P2-purinoceptor antagonist), neomycin (a PLC inhibitor), staurosporin (a PKC inhibitor), and PD98059 (a MEK inhibitor) significantly attenuated the ATP-induced activation of MAPK. ATP activated ERK1/2 and induced translocation of activated ERK1/2 to the nucleus. The gene array for 23 genes associated with members of the mitogenic pathway cascade and immediate early genes revealed that the expression of early growth response 1 was increased. In addition, MTT assay revealed an inhibition effect of ATP on cell viability. ATP activated MAPKs through the P2Y2 purinoceptor/PLC/PKC/ERK signaling pathway and induced translocation of ERK1/2 into the nucleus. Further, ATP induced the expression of early growth response 1 and inhibited cell viability in hESCs.  相似文献   

20.
R Goldman  E Ferber  U Zort 《FEBS letters》1992,309(2):190-192
Vanadate (V) potentiated (4- to 10-fold) the activation of cellular phospholipase A2 (PLA2) induced by H2O2 (H), a phorbol ester (T), a Ca(2+)-ionophore (A) and opsonized zymosan in macrophages. V+H induced in intact cells the activation and translocation of PLA2 and protein kinase C (PKC) to the plasma membrane. V+H and V+T+A induced strong chemiluminescence (CL) which was abrogated by a specific NADPH oxidase inhibitor diphenylene iodonium (DPI). DPI markedly suppressed the stimulation of PLA2 by V+T+A and V+OZ. The results suggest that the formation of endogenous reactive oxygen species (ROS) is important for PLA2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号