首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stopped-flow radiationless energy-transfer kinetics have been used to examine the effects of chloride on the hydrolysis of Dns-Lys-Phe-Ala-Arg by angiotensin converting enzyme. The kinetic constants for hydrolysis at pH 7.5 and 22 degrees C in the presence of 300 mM sodium chloride were KM = 28 microM and kcat = 110 s-1, and in its absence, KM = 240 microM and kcat = 68 s-1. The apparent binding constant for chloride was 4 mM, and the extent of chloride activation in terms of kcat/KM was 14-fold. The effects of chloride on the pre-steady-state were examined at 2 degrees C. In the presence of chloride, two distinct enzyme-substrate complexes were observed, suggesting multiple steps in substrate binding. The initial complex was formed during the mixing period (kobsd greater than 200 s-1) while the second complex was formed much more slowly (kobsd = 40 s-1 when [S] = 5 microM and [NaCl] = 150 mM). Strikingly, in the absence of chloride, only a single, rapidly formed enzyme-substrate complex was observed. These results are consistent with a nonessential activator kinetic mechanism in which the slow step reflects conversion of an initially formed complex, (E X Cl- X S)1, to a more tightly bound complex, (E X Cl- X S)2.  相似文献   

2.
We describe an assay to measure the extent of enzymatic unwinding of DNA by a DNA helicase. This assay takes advantage of the quenching of the intrinsic protein fluorescence of Escherichia coli SSB protein upon binding to ssDNA and is used to characterize the DNA unwinding activity of recBCD enzyme. Unwinding in this assay is dependent on the presence of recBCD enzyme and linear dsDNA, is consistent with the known properties of recBCD enzyme, and closely parallels other methods for measuring recBCD enzyme helicase activity. The effects of varying temperature, substrate concentrations, enzyme concentration, and mono- and divalent salt concentrations on the helicase activity of recBCD enzyme were characterized. The apparent Km values for recBCD enzyme helicase activity on linear M13 dsDNA molecules at 25 degrees C are 0.6 nM dsDNA molecules and 130 microM ATP, respectively. The apparent turnover number for unwinding is approximately 15 microM base pairs s-1 (microM recBCD enzyme)-1. When this rate is corrected for the observed stoichiometry of recBCD enzyme binding to dsDNA, kcat for helicase activity corresponds to an unwinding rate of approximately 250 base pairs of DNA s-1 (functional recBCD complex)-1 at 25 degrees C. At 37 degrees C, the apparent Km value for dsDNA molecules was the same as that at 25 degrees C, but the apparent turnover number became 56 microM base pairs s-1 (microM recBCD enzyme)-1 [or 930 base pairs s-1 (functional recBCD complex)-1 when corrected for observed stoichiometry]. With increasing NaCl concentration, kcat peaks at 100 mM, and the apparent Km value for dsDNA increases by 3-fold at 200 mM NaCl. In the presence of 5 mM calcium acetate, the apparent Km value is increased by 3-fold, and kcat decreased by 20-30%. We have also shown that recBCD enzyme molecules are able to catalytically unwind additional dsDNA substrates subsequent to initiation, unwinding, and dissociation from a previous dsDNA molecule.  相似文献   

3.
Steady-state kinetic parameters were determined for the action of human alpha-thrombin on human fibrin I polymer, an intermediate in the alpha-thrombin-catalyzed conversion of fibrinogen to the fibrin matrix of blood clots during the terminal phase of the blood clotting cascade. Values of 49 s-1 and 7.5 microM were determined (at 37 degrees C, pH 7.4, gamma/2 0.17) for kcat and Km, respectively. Studies of the effect of fibrin I on alpha-thrombin-catalyzed hydrolysis of the fluorogenic substrate N-p-Tos-Gly-L-Pro-L-Arg-7-amido-4-methylcoumarin (tos-GPR-amc) and the effect of fibrin I on the reaction of alpha-thrombin with antithrombin III (AT) were presented which indicate that the active site of alpha-thrombin is accessible while it is bound to its substrate fibrin I. Fibrin I inhibited alpha-thrombin-catalyzed hydrolysis of tos-GPR-amc in a manner inconsistent with the pure competitive inhibition expected for an alternative substrate, whereas fibrinogen, an alpha-thrombin substrate, behaved as a pure competitive inhibitor of the alpha-thrombin-catalyzed hydrolysis of tos-GPR-amc. The effect of fibrin I on alpha-thrombin-catalyzed hydrolysis of tos-GPR-amc was shown to be consistent with alpha-thrombin binding to fibrin I in alternative orientations. In one orientation both the active site and a site distinct from the active site (an exosite) of alpha-thrombin are occupied by fibrin I. In the other orientation only the exosite of alpha-thrombin is occupied and the active site is freely accessible to other substrates. The values of both kcat (21 s-1) and Km (less than 0.23 microM) determined for fibrin I-bound alpha-thrombin acting on tos-GPR-amc were decreased relative to the values of kcat (180 s-1) and Km (7.3 microM) observed for the action of uncomplexed alpha-thrombin on tos-GPR-amc. This observation suggests that the active site of alpha-thrombin is altered in fibrin I-bound alpha-thrombin. Studies of the effect of fibrin I on the reaction of AT with alpha-thrombin (at 37 degrees C, pH 7.4, gamma/2 0.17) indicated that when alpha-thrombin is bound to fibrin I in an orientation where the active site of alpha-thrombin is accessible, AT reacts with alpha-thrombin with a rate constant (greater than 4.2 x 10(4) M-1 s-1) that is greater than the rate constant (1.5 x 10(4) M-1 s-1) for reaction of AT with the free enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A major beta-glucosidase I and a minor beta-glucosidase II were purified from culture filtrates of the fungus Trichoderma reesei grown on wheat straw. The enzymes were purified using CM-Sepharose CL-6B cation-exchange and DEAE Bio-Gel A anion-exchange chromatography steps, followed by Sephadex G-75 gel filtration. The isolated enzymes were homogeneous in SDS-polyacrylamide gel electrophoresis and isoelectric focusing. beta-Glucosidase I (71 kDa) was isoelectric at pH 8.7 and contained 0.12% carbohydrate; beta-glucosidase II (114 kDa) was isoelectric at pH 4.8 and contained 9.0% carbohydrate. Both enzymes catalyzed the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (pNPG). The Km and kcat/Km values for cellobiose were 2.10 mM, 2.45.10(4) s-1 M-1 (beta-glucosidase I) and 11.1 mM, 1.68.10(3) s-1 M-1 (beta-glucosidase II). With pNPG as substrate the Km and kcat/Km values were 182 microM, 7.93.10(5) s-1 M-1 (beta-glucosidase I) and 135 microM, 1.02.10(6) s-1 M-1 (beta-glucosidase II). The temperature optimum was 65-70 degrees C for beta-glucosidase I and 60 degrees C for beta-glucosidase II, the pH optimum was 4.6 and 4.0, respectively. Several inhibitors were tested for their action on both enzymes. beta-Glucosidase I and II were competitively inhibited by desoxynojirimycin, gluconolactone and glucose.  相似文献   

5.
A D Hall  A Williams 《Biochemistry》1986,25(17):4784-4790
Values of kcat and Km have been measured for the Escherichia coli alkaline phosphatase catalyzed hydrolysis of 18 aryl and 12 alkyl monophosphate esters at pH 8.00 and 25 degrees C. A Br?nsted plot of log (kcat/Km) (M-1 s-1) vs. the pK of the leaving hydroxyl group exhibits two regression lines: log (kcat/Km) = -0.19 (+/- 0.02) pKArOH + 8.14 (+/- 0.15) log (kcat/Km) = -0.19 (+/- 0.01) pKROH + 5.89 (+/- 0.17) Alkyl phosphates with aryl or large lipophilic side chains are not correlated by the above equations and occupy positions intermediate between the two lines. The observed change in effective charge on the leaving oxygen of the ester (-0.2) is very small, consistent with substantial electrophilic participation of the enzyme with this atom. Cyclohexylammonium ion is a noncompetitive inhibitor against 4-nitrophenyl phosphate substrate at pH 8.00, and neutral phenol is a competitive inhibitor (Ki = 82.6 mM); these data and the 100-fold larger reactivity of aryl over alkyl esters are consistent with the existence of a lipophilic binding site for the leaving group of the substrate. The absence of a major steric effect in kcat/Km for substituted aryl esters confirms that the leaving group in the enzyme--substrate complex points away from the surface of the enzyme. Arguments are advanced to exclude a dissociative mechanism (involving a metaphosphate ion) for the enzyme-catalyzed substitution at phosphorus.  相似文献   

6.
Phosphoglycerate mutase and bisphosphoglycerate synthase (mutase) can both be phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form phosphohistidine enzymes. The present study uses a rapid quench procedure to determine if, for each enzyme, the formation of the phosphorylated enzyme and phosphate transfer from the enzyme can occur at rates consistent with the overall reactions. With bisphosphoglycerate synthase from horse red blood cells (glycerate-1,3-P2 leads to glycerate-2,3-P2) at pH 7.5, 25 degrees, phosphorylation of the enzyme appears rate-limiting, k = 13.5 s-1, compared with kcat = 12.5 s-1 for the overall synthase rate. Phosphoryl transfer from the enzyme to phosphoglycerate occurs at 38 s-1 at 4 degrees and was too fast to measure at 25 degrees. With chicken muscle phosphoglycerate mutase the half-times were too short to measure under optimal conditions. The rate of enzyme phosphorylation by glycerate-2,3-P2 at pH 5.5, 4 degrees, could account for the overall reaction rate of 170 s-1. The rate of phosphoryl transfer from the enzyme to glycerate-3-P was too rapid to measure under the same conditions. It is concluded that the phosphorylated enzymes have kinetic properties consistent with their participation as intermediates in the reactions catalyzed by these enzymes.  相似文献   

7.
A convenient chromophoric assay for porcine pepsin has been developed using a new synthetic substrate. The sequence of this substrate was chosen based on the known subsite preferences for this enzyme. The peptide contains a phenylalanyl-p-nitrophenylalanine sequence at the reactive site. Cleavage of this bond yields a change in absorbance at 310 nm of between 1700 and 2000 per mole. This allows kinetic data to be obtained readily and accurately. The products of cleavage have been identified by isolation of a peptide fragment by high-performance liquid chromatography. Values of kcat, Km, and kcat/Km of 94 +/- 6 s-1, 0.13 +/- .04 mM, and 815 +/- 210 s-1/mM-1 were obtained at pH 3.0 and 37 degrees C. The peptide is soluble over the pH range from 2 to 7, thus facilitating determination of the pH dependence of the kinetic parameters. The substrate is also valuable in studying the inhibition of pepsin.  相似文献   

8.
The aerobic degradation of 5,6,7,8-tetrahydrobiopterin at neutral pH is catalysed by peroxidase (EC 1.11.1.7) and provides quinonoid 7,8-dihydro(6H)biopterin which readily loses the side chain to yield 7,8-dihydro(3H)pterin. The latter is in equilibrium with trace amounts of 6-hydroxy-5,6,7,8-tetrahydropterin (covalent hydrate) which is irreversibly oxidised to quinonoid 6-hydroxy-7,8-dihydro(6H)pterin, and this finally rearranges to 7,8-dihydroxanthopterin. Spectroscopic evidence (ultraviolet, 1H NMR and 13C NMR) is presented for the reversible addition of water across the 5,6-double bond of 7,8-dihydro(3H)pterin. The intermediate quinonoid 6-hydroxy-7,8-dihydro(6H)pterin is a good substrate for dihydropteridine reductase (EC 1.6.99.7) with a Km of 16.3 microM and kcat of 22.5 s-1. The rate of aerobic degradation (oxidation and loss of the side chain) of natural (6R)-5,6,7,8-tetrahydrobiopterin is several times slower than the rate for the unnatural (6S) isomer. By using a modified assay procedure the kinetic parameters for dihydropteridine reductase are as follows: with (6R)-7,8-dihydro(6H)biopterin Km = 1.3 microM and kcat = 22.8 s-1; with (6S)-7,8-dihydro(6H)biopterin Km = 13.5 microM and kcat = 51.6 s-1; and with (6RS)-7,8-dihydro(6H)neopterin Km = 19.2 microM and kcat = 116 s-1.  相似文献   

9.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

10.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

12.
The molecular mass of destabilase isolated from the medicinae leech Hirudo medicinalis was found to be equal to 12.3 kDa. A kinetic analysis of the sole presently known synthetic substrate, L-gamma-Glu-pNA, showed that the enzyme is relatively stable to heating (5 min, 70 degrees C); the pH optimum lies at 7.0-8.5. The enzyme has a specific activity of 0.15 x 10(-9) mol.s-1.mg-1; Km = 2.2 x 10(-4) M, kcat is 3.53 x 10(-3) s-1 (pH 8.0, 37 degrees C).  相似文献   

13.
E S Lightcap  C J Halkides  P A Frey 《Biochemistry》1991,30(42):10307-10313
mu-Monothiopyrophosphate (MTP) binds monovalent and divalent metal ions with dissociation constants (Kd) similar to those for pyrophosphate (PPi). The values of Kd for metal-MTP complexes are the following, as measured kinetically in the hydrolysis of MTP (microM): Mg2+, 32 +/- 4; Mn2+, 5.4 +/- 1.4; and Co2+, 27 +/- 15. The thermodynamically measured (EPR) values for Mg2+ and Co2+ are 28 +/- 13 microns and 11 +/- 4 microM, respectively; and the Kd for the complex MnPPi is 3.4 +/- 0.5 microM. The metal-MTP complexes undergo hydrolysis at rates modestly faster or slower than the rate at which MTP itself reacts. The complexes MgMTP2-, CoMTP2-, and MnMTP2- undergo hydrolytic cleavage with release of thiophosphate with observed first-order rate constants of 1.6 x 10(-2) min-1, 2.3 x 10(-2) min-1, and 0.6 x 10(-2) min-1, respectively, at 35 degrees C, compared with 1.1 x 10(-2) min-1 for MTP4- under the same conditions. Alkali metal cations also stimulate or retard the hydrolysis of MTP. At 25 degrees C and pH 12.2, the observed rate constant for tetramethylammonium MTP4- is 2.1 x 10(-3) min-1, and the estimated rate constants (min-1) for saturating alkali metals under the same conditions are as follows: Li+, 0.25 x 10(-3); Na+, 3.9 x 10(-3), K+, 6.7 x 10(-3); and Cs+, 6.7 x 10(-3). Divalent metal ions markedly retard the hydrolysis of MTP at pH 7 and 8 because complexation shifts the pH rate profile more than 2 pH units toward the acid side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Phe5(4-nitro)-bradykinin has been identified as a good synthetic substrate to study the kinetics and mechanism of action of the metalloendopeptidase meprin. No convenient substrate for kinetic analysis of the enzyme had been previously described. HPLC analyses indicated that meprin cleaved bradykinin and nitrobradykinin between Phe5 (or Phe5(NO2)) and Ser6. Reaction rates for bradykinin were determined by quantitative HPLC analyses, whereas rates for nitrobradykinin were measured by continuous monitoring of the spectral change that occurs at 310 nm when the Phe(NO2)-Ser bond is hydrolyzed. For nitrobradykinin and unmodified bradykinin, respectively, Km values were 281 and 425 microM, kcat values were 28 and 22 s-1, and kcat/Km values were 9.7 x 10(4) and 5.1 x 10(4)M-1. The two products of bradykinin hydrolysis were not substrates for the enzyme, but they were inhibitors. The initial rates of hydrolysis of nitrobradykinin increased linearly with enzyme concentration (0.09-2.2 micrograms/ml), and increased linearly with temperature in the range from 15 to 55 degrees C. Hydrolysis of the substrate was optimal at alkaline pH values. The cysteine endopeptidases papain and cathepsin L and the metalloproteases thermolysin, angiotensin-converting enzyme, and neutral endopeptidase (EC 3.4.24.11) also cleaved nitrobradykinin, but at different peptide bonds than meprin. The single cleavage of nitrobradykinin at the Phe(NO2)-Ser bond and the concomitant spectral shift that occurs at alkaline pH makes this a particularly suitable substrate for meprin.  相似文献   

15.
The three genes encoding the 4-chlorobenzene dehalogenase polypeptides were excised from a Pseudomonas sp. CBS-3 DNA fragment and separately cloned and expressed in Escherichia coli. The three enzymes were purified from the respective subclones by using an ammonium sulfate precipitation step followed by one or two column chromatographic steps. The 4-chlorobenzoate:coenzyme A ligase was found to be a homodimer (57-kDa subunit size), to require Mg2+ (Co2+ and Mn2+ are also activators) for activity, and to turn over MgATP (Km = 100 microM), coenzyme A (Km = 80 microM), and 4-chlorobenzoate (Km = 9 microM) at a rate of 30 s-1 at pH 7.5 and 25 degrees C. Benzoate, 4-bromobenzoate, 4-iodobenzoate, and 4-methylbenzoate were shown to be alternate substrates while 4-hydroxybenzoate, 4-aminobenzoate, 2-aminobenzoate, 2,3-dihydroxybenzoate, 4-coumarate, palmate, laurate, caproate, butyrate, and phenylacetate were not substrate active. The 4-chlorobenzoate-coenzyme A dehalogenase was found to be a homotetramer (30 kDa subunit size) to have a Km = 15 microM and kcat = 0.3 s-1 at pH 7.5 and 25 degrees C and to be catalytically inactive toward hydration of crotonyl-CoA, alpha-methylcrotonyl-CoA, and beta-methylcrotonyl-CoA. The 4-hydroxybenzoate-coenzyme A thioesterase was shown to be a homotetramer (16 kDa subunit size), to have a Km = 5 microM and kcat = 7 s-1 at pH 7.5 and 25 degrees C, and to also catalyze the hydrolyses of benzoyl-coenzyme A and 4-chlorobenzoate-coenzyme A. Acetyl-coenzyme A, hexanoyl-coenzyme A, and palmitoyl-coenzyme A were not hydrolyzed by the thioesterase.  相似文献   

16.
An improved cathepsin-D substrate and assay procedure   总被引:1,自引:0,他引:1  
Ten analogs of the peptide A-Phe(NO2)-Phe-Val-Leu-B were synthesized and tested as substrates for cathepsin D and pepsin. The best substrate found for cathepsin D, Phe-Ala-Ala-Phe(NO2)-Phe-Val-Leu-OM4P (kcat = 2.9 s-1; Km = 7.1 microM), has the largest kcat/Km value (408 mM-1 s-1) reported to date for this enzyme. The effect of peptide structure on solubility and kinetic parameters is discussed. The peptide provides a useful new substrate for continuous assay of cathepsin D.  相似文献   

17.
Bovine kappa-casein was fractionated at pH 8.0 on DEAE-Sepharose with an NaCl gradient, followed by DEAE-cellulose chromatography using a decreasing pH gradient from pH 6.0 to 4.5. At least ten components could be identified, each differing in N-acetylneuraminic acid (NeuAc) and/or phosphorus content. Two components appeared to be multiply-phosphorylated, but did not contain NeuAc. The possible significance of this finding in relation to the mode of phosphorylation and glycosylation in vivo is discussed. A carbohydrate-free fraction as well as two NeuAc-containing fractions were compared in their substrate behaviour towards the action of the milk-clotting enzyme chymosin at pH 6.6 and 30 degrees C. To this end the trichloroacetic acid-soluble reaction products were analysed by high-performance gel-permeation chromatography. In order of increasing carbohydrate content the kcat. values found ranged from 40 to 25 s-1 and the Km values from 9 to 3 microM; the overall substrate properties of these components as reflected by the kinetic parameter kcat./Km ranged from 5 to 8 microM-1 X S-1. Irreversible polymerization of the carbohydrate-free fraction brought about a more-than-2-fold increase in Km, the kcat. value remaining virtually constant. The kcat./Km found for the cleavage of whole kappa-casein at pH 6.6 was of the same magnitude as the kcat./Km found for the polymerized carbohydrate-free fraction (i.e. about 3 microM-1 X S-1). No indication of substrate inhibition was found for the carbohydrate-free fraction.  相似文献   

18.
FK506-binding protein (FKBP) catalyzes the cis-trans isomerization of the peptidyl-prolyl amide bond (the PPIase reaction) and is the major intracellular receptor for the immunosuppressive drugs FK506 and rapamycin. One mechanism proposed for catalysis of the PPIase reaction requires attack of an enzyme nucleophile on the carbonyl carbon of the isomerized peptide bond. An alternative mechanism requires conformational distortion of the peptide bond with or without assistance by an enzyme hydrogen bond donor. We have determined the kinetic parameters of the human FKBP-catalyzed PPIase reaction. At 5 degrees C, the isomerization of Suc-Ala-Leu-Pro-Phe-pNA proceeds in 2.5% trifluorethanol with kcat = 600 s-1, Km = 0.5 mM and kcat/Km = 1.2 x 10(6) M-1s-1. The kcat/Km shows little pH dependence between 5 and 10. A normal secondary deuterium isotope effect is observed on both kcat and kcat/Km. To investigate dependence on enzyme nucleophiles and proton donors, we have replaced eight potential catalytic residues with alanine by site-directed mutagenesis. Each FKBP variant efficiently catalyzes the PPIase reaction. Taken together, these data support an unassisted conformational twist mechanism with rate enhancement due in part to desolvation of the peptide bond at the active site. Fluorescence quenching of the buried tryptophan 59 residue by peptide substrate suggests that isomerization occurs in a hydrophobic environment.  相似文献   

19.
A sensitive two-stage enzymatic reaction for mammalian and bacterial metalloendopeptidases has been developed using the substrate 3-carboxypropanoyl-alanyl-alanyl-leucine-4-nitroanilide supplemented with Streptomyces griseus amino-peptidase. Neutral endopeptidase EC 3.4.24.11 from bovine kidney hydrolyzes the substrate (pH 7.5, 25 degrees C) with a catalytic efficiency (kcat = 1.2 x 10(2) s-1, Km = 0.15 mM) of the highest ever reported for the enzyme acting on synthetic chromophoric and fluorogenic substrates. Thermolysin hydrolyzes the substrate at a faster rate (kcat = 1.2 x 10(3) s-1) but the overall efficiency is diminished by a higher Km (4.2 mM). Suspensions of human neutrophil cells and culture filtrates of Bacillus cereus have been assayed sensitively for their neutral endopeptidases and neutral proteinase activities, respectively. The assay provides a convenient tool for the kinetic investigation of neutral endopeptidases and neutral proteinases and for assessing their function in biological systems.  相似文献   

20.
The oxidation of F420H2 (reduced coenzyme F420) is a key reaction in the final step of methanogenesis. This step is catalyzed in Methanolobus tindarius by the membrane-bound F420H2-dehydrogenase which was purified 31-fold to apparent homogeneity. The apparent molecular mass of the native enzyme was 120 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of five different subunits of apparent molecular masses of 45 kDa, 40 kDa, 22 kDa, 18 kDa and 17 kDa. The purified F420H2-dehydrogenase, which was yellowish, contained 16 +/- 2 mol iron and 16 +/- 3 mol acid-labile sulfur/mol enzyme. No flavin could be detected. The oxygen-stable enzyme catalyzed the oxidation of F420H2 (apparent Km = 5.4 microM) with methylviologen and metronidazole as electron acceptors at a specific rate of 13 mumol.min-1.mg-1 (kcat = 25.5 s-1). The isoelectric point was at pH 5.0. The temperature optimum was at 37 degrees C and the pH optimum at 6.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号