首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

3.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。  相似文献   

4.
Presently, our work, as well as that of other authors, has produced convincing evidence in favor of the idea that disturbances in hormonal signaling systems are one of the main causes of the development of pathological alterations and complications in diabetes. However, the molecular mechanisms underlying these disturbances remain practically unstudied, particularly in insulin-independent type 2 diabetes. Using a neonatal streptozotocin model of type 2 diabetes, whose duration was either 80 or 180 days, we studied changes in the functional activity of components of the hormone-regulated adenylyl cyclase (AC) signaling system in the myocardium and brain striatum of diabetic rats as compared with control animals. In diabetes, the Gi-realized process of transduction of the hormonal signal inhibiting AC activity has been shown to be markedly impaired. This is manifested as a decrease of the inhibitory effect of hormones on AC activity and an attenuation of their stimulation of the G-protein’s GTP-binding activity. In the case of noradrenaline (myocardium), the inhibitory pathway of the AC system regulation is completely suppressed, while the stimulatory pathway is preserved. An increase in the duration of diabetes development from 80 to 180 days leads to some decrease in the transduction of hormonal signals realized via Gi-proteins. The stimulatory effects of biogenic amines and relaxin on AC activity and GTP binding in the myocardium and brain of diabetic rats change relatively little, both in the 80-and in the 180-day diabetes. Thus, in the experimental type 2 diabetes, disturbances in Gi-protein coupled signal cascades are primarily observed, through which hormones realize their inhibition of AC activity.  相似文献   

5.
主要嗅觉表皮(main olfactory epithelium, MOE)是哺乳动物感知气味分子的主要嗅觉器官。在MOE组织内,大多数嗅觉神经元通过cAMP信号传导通路感知气味信息。作为嗅觉cAMP信号通路的主要成员之一,腺苷酸环化酶3(adenylyl cyclase 3, ac3)基因敲除小鼠嗅觉探测功能丧失。除cAMP信号传导通路外,MOE内AC3相关因子AC2和AC4,以及肌醇1,4,5-三磷酸(inositol 1,4,5-trisphosphate,IP3)信号通路和Sonic Hedgehog(Shh)信号通路均有表达。然而,敲除ac3是否会对ac2和ac4以及IP3和Shh信号通路成员产生影响,尚不清楚。本文以AC3缺失(AC3-/-)及其野生型小鼠(AC3+/+)MOE为材料,采用实时荧光定量PCR(qRT-PCR)和免疫荧光组织化学方法,发现AC3缺失后,MOE内的ac2和ac4,以及IP3信号通路中的IP3受体ip3r1及钙调蛋白calm1和calm2表达水平均明显降低。Shh信号通路中的受体patched(ptch)与smoothened(smo)、以及核转录因子gli1与gli2的表达也受到了影响。总之,AC3基因缺失不但导致小鼠MOE组织中cAMP信号通路受损,同时AC3相关因子,IP3信号通路和Shh信号通路的传导也受到抑制。本文对于阐明AC3基因敲除小鼠嗅觉丧失的原因及其嗅觉探测机制具有重要启示作用。  相似文献   

6.
The domain V within the internal ribosome entry segment (IRES) of poliovirus (PV) is expected to be important in its own neurovirulence because it contains an attenuating mutation in each of the Sabin vaccine strains. In this study, we try to find out if the results observed in the case of Sabin vaccine strains of PV can be extrapolated to another virus belonging to the same genus of enteroviruses but with a different tropism. To test this hypothesis, we used the coxsackievirus B3 (CVB3), known to be the most common causal agent of viral myocarditis. The introduction of the three PV Sabin-like mutations in the equivalent positions (nucleotides 484, 485, and 473) to the domain V of the CVB3 IRES results in significant reduced viral titer of the Sabin3-like mutant (Sab3-like) but not on those of Sab1- and Sab2-like mutants. This low titer was correlated with poor translation efficiency in vitro when all mutants were translated in rabbit reticulocyte lysates. However, elucidation by biochemical probing of the secondary structure of the entire domain V of the IRES of Sabin-like mutants reveals no distinct profiles in comparison with the wild-type counterpart. Prediction of secondary structure by MFOLD program indicates a structural perturbation of the stem containing the Sab3-like mutation, suggesting that specific protein-viral RNA interactions are disrupted, preventing efficient viral translation.  相似文献   

7.
8.
The pathogenesis of CVB3-induced chronic myocarditis remains unknown. Activated monocytes and macrophages may maintain ongoing inflammation during a persistent CVB3 infection and possibly represent the major mechanism leading to chronic myocarditis. We decided to study the activation status of cells by studying TNFα secretion in vitro using whole blood culture in CVB3-induced murine chronic myocarditis. Seven DBA/2 +/+ mice and 18 NMRI nu/nu mice were inoculated intraperitoneally with 5 × 105 pfu of CVB3, and mice were mock-infected. Thirty-one days post-infection, all mice were sacrificed, blood samples were obtained from the heart, and the heart was removed. Enteroviral genomic detection by RT-PCR, virus isolation and histological analysis of heart samples were performed. Heparinized whole blood (25 μl) was cultured for 4 hr and 24 hr in sterile 96 well-plate containing 225 μl RPMI in the presence or the absence of activators (LPS + PHA). The TNFα levels in the whole blood from mock-infected DBA/2 (n = 4) and NMRI nu/nu mice (n = 5) were not different. A moderate increase of TNFα was observed in three out of five DBA/2 mice with negative CVB3 that had no histological abnormalities in myocardium. An increased level of TNFα was found in the sole DBA/2 mouse with positive CVB3 detection and chronic myocarditis. An increased level of TNFα was found in one out of nine NMRI nu/nu mice with positive CVB3 detection and chronic myocarditis and in one out of seven mice with positive CVB3 detection exempt of lesions in myocardium. In other infected mice, the level of TNFα was normal. Enteroviral genome was not detected in the blood from infected mice at 31 days post-infection. The increased TNFα level in some mice may be designed for a beneficial inflammatory and immune response, however, an exaggerated release may be associated with an adverse effect. The normal TNFα level in whole blood cultures from mice with chronic myocarditis does not exclude enhanced cytokine production at infected loci such as myocardial tissue. This is the first report to use whole blood cultures to study the production of cytokines in virus-induced disease in a small animal model.  相似文献   

9.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

10.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

11.
柯萨奇病毒B组(Coxsackievirus B,CVB)感染细胞时其基因组RNA存在不稳定现象,但产生机制尚不清楚。本研究将柯萨奇病毒B组3型(CVB3)感染细胞后,利用5′ cDNA末端快速扩增技术(5′ rapid amplification of cDNA ends,5′ RACE)扩增并克隆细胞内CVB3基因组片段,并对每条序列及其5′端的二级结构进行分析。结果获得的20条CVB3基因组片段,长度为 2 067~5 547 bp,片段断端主要分布于2Apro和2C编码区。RNAfold分析显示,这些片段多数在5′断点端形成二级茎-环结构。本研究显示,CVB在宿主细胞感染时可形成大量不完整基因组RNA片段,这些片段可在5′断点端形成局部双链结构,提示片段不是随机产生,可能是RNA酶剪切产物。此发现有助于理解CVB基因组不稳定的机制。  相似文献   

12.
Targeting regulatory RNA regions to interfere with the biosynthesis of a protein is an intriguing alternative to targeting a protein itself. Regulatory regions are often unique in sequence and/or structure and, thus, ideally suited for specific recognition with a low risk of undesired side effects. Targeting regulatory RNA elements, however, is complicated by their complex three-dimensional structure, which poses kinetic and thermodynamic constraints to the recognition by a complementary oligonucleotide. Oligonucleotide mimics, which shift the thermodynamic equilibrium towards complex formation and yield stable complexes with a target RNA, can overcome this problem. Peptide nucleic acids (PNA) represent such a promising class of molecules. PNA are very stable, non-ionic compounds and they are not sensitive to enzymatic degradation. Yet, PNA form specific base pairs with a target sequence. We have designed, synthesised and characterised PNA able to enter infected cells and to bind specifically to a control region of the genomic RNA of coxsackievirus B3 (CVB3), which is an important human pathogen. The results obtained by studying the interaction of such PNA with their RNA target, the entrance into the cell and the viral inhibition are herein presented.  相似文献   

13.
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.  相似文献   

14.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis.  相似文献   

15.
16.
本研究在柯萨奇病毒B3(coxsackievirus B3,CVB3)基因组P1编码区与P2编码区之间插入一段has-miRNA-205-3p和has-miRNA-205-5p(简称miR-205)的靶序列,得到重组病毒v205T,并比较分析了它在人宫颈癌细胞系HeLa细胞(miR-205低水平表达)和非小细胞肺癌细胞系A549细胞(miR-205高水平表达)中的复制情况。结果表明,插入的miR-205靶序列不影响病毒在HeLa细胞中的复制水平,但抑制了病毒在A549细胞中的复制,病毒滴度为对照的1%以下。为探讨v205T在2株细胞中复制差异的原因,进一步加入miR-205的类似物和抑制物。miR-205类似物可抑制v205T在HeLa细胞中复制和杀伤细胞的水平,而miR-205抑制物可提高v205T在A549细胞中的复制和杀伤细胞的水平。结果表明,v205T的复制确实受miR-205的调控。本研究为开发基于CVB3载体的溶瘤病毒和针对CVB3的减毒活疫苗提供了依据。  相似文献   

17.
Liu  Tingjun  Tong  Jing  Shao  Chen  Qu  Junyan  Wang  Hua  Shi  Yi  Lin  Yajing  Liu  Yun  Shao  Shihe  Shen  Hongxing 《中国病毒学》2021,36(6):1585-1599
Virologica Sinica - Viral myocarditis (VM) is an inflammatory disease of the myocardium associated with heart failure, which is caused by common viral infections. A majority of the infections are...  相似文献   

18.
Our previous study of coxsackievirus B3 (CVB3)‐induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet‐On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation‐enhancing α‐mannosidase‐like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus‐activated caspase and subsequently degraded via the ubiquitin‐proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation‐independent and ubiquitin‐lysosome pathway. Finally, we demonstrated that CRISPR/Cas9‐mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non‐enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.  相似文献   

19.
20.
H9c2细胞是来源于大鼠胚胎心脏组织的成肌细胞系,B组柯萨奇病毒(group B Coxsackievirus,CVB)是心肌炎和扩张型心肌病的主要病原.本研究观察了CVB3在H9c2细胞中的感染性,探讨H9c2细胞是否可用于CVB致心肌疾病的实验研究.用整合了增强型绿色荧光蛋白(EGFP)或海肾荧光素酶(RLuc)的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号