首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song JT  Koo YJ  Seo HS  Kim MC  Choi YD  Kim JH 《Phytochemistry》2008,69(5):1128-1134
We reported previously that a recombinant salicylic acid (SA) glucosyltransferase1 (AtSGT1) from Arabidopsis thaliana catalyzes the formation of both SA 2-O-beta-D-glucoside (SAG) and the glucose ester of SA (SGE). Here, transgenic Arabidopsis plants overexpressing AtSGT1 have been constructed, and their phenotypes analyzed. Compared to wild-type plants, transgenic plants showed an increased susceptibility to Pseudomonas syringae and reduced the accumulation levels of both free SA and its glucosylated forms (SAG and SGE). On the other hand, the overexpression increased the levels of methyl salicylate (MeSA) and methyl salicylate 2-O-beta-D-glucoside (MeSAG), and also induced SA carboxyl methyltransferase1 (AtBSMT1) expression, whose products catalyze the conversion of SA to MeSA. Our data indicate that reduced resistance by AtSGT1 overexpression results from a reduction in SA content, which is at least in part caused by increases in MeSAG and MeSA levels at the expense of SA. Our study also suggests that genetic manipulation of AtSGT1 can be utilized as an important regulatory tool for pathogen control.  相似文献   

2.
3.
Salicylic acid (SA) is a plant hormone involved in a number of physiological responses including both local and systemic resistance of plants to pathogens. In Arabidopsis, SA is glucosylated to form either SA 2‐O‐β‐d ‐glucose (SAG) or SA glucose ester (SGE). In this study, we show that SAG accumulates in the vacuole of Arabidopsis, while the majority of SGE was located outside the vacuole. The uptake of SAG by vacuolar membrane‐enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate (ABC transporter inhibitor) and bafilomycin A1 (vacuolar H+‐ATPase inhibitor), suggesting that SAG uptake involves both an ABC transporter and H+‐antiporter. Despite its absence in the vacuole, we observed the MgATP‐dependent uptake of SGE by Arabidopsis vacuolar membrane‐enriched vesicles. SGE uptake was not inhibited by vanadate but was inhibited by bafilomycin A1 and gramicidin D providing evidence that uptake was dependent on an H+‐antiporter. The uptake of both SAG and SGE was also inhibited by quercetin and verapamil (two known inhibitors of multidrug efflux pumps) and salicin and arbutin. MgATP‐dependent SAG and SGE uptake exhibited Michaelis–Menten‐type saturation kinetics. The vacuolar enriched‐membrane vesicles had a 46‐fold greater affinity and a 10‐fold greater transport activity with SGE than with SAG. We propose that in Arabidopsis, SAG is transported into the vacuole to serve as a long‐term storage form of SA while SGE, although also transported into the vacuole, is easily hydrolyzed to release the active hormone which can then be remobilized to other cellular locations.  相似文献   

4.
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1) , which catalyzes the conversion of free SA into SA O- β-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.  相似文献   

5.
Interconversion of the salicylic acid signal and its glucoside in tobacco   总被引:21,自引:3,他引:18  
Salicylic acid (SA) has been proposed to play a role in the induction of pathogenesis-related (PR) proteins and systemic acquired resistance (SAR) in tobacco. Since SA is rapidly converted to salicylic acid β-glucoside (SAG) in tobacco, we have attempted to assess the role of SAG in pathogenesis by application of chemically synthesized SAG to tobacco leaves. SAG was as active as SA in induction of PR-1 gene expression. This induction was preceded by a transient release of SA, which occurred in the extracellular spaces. The existence of a mechanism that releases SA from SAG suggests a possible role for SAG in SAR.  相似文献   

6.
Salicylic acid (SA) plays an important role in plant disease resistance. Inoculation of tobacco leaves with incompatible pathogens triggers the biosynthesis of SA which accumulates primarily as the SA 2-O-beta-D-glucoside (SAG) and glucosyl salicylate (GS). The tobacco UDP-glucose:salicylic acid glucosyltransferase (SA GTase) capable of forming both SAG and GS was purified, characterized, and partially sequenced. It has an apparent molecular mass of 48 kDa, a pH optimum of 7.0, and an isoelectric point at pH 4.4. UDP-glucose was the sole sugar donor for the enzyme. However, SA and several phenolics served as glucose acceptors. The apparent K(m) values for UDP-glucose and SA were 0.27 and 1-2 mM, respectively. Zn(2+) and UDP inhibited its activity. The corresponding cDNA clone which encoded a protein of 459 amino acids was isolated from an SA-induced tobacco cDNA library and overexpressed in Escherichia coli. The recombinant protein catalyzed the formation of SAG and GS, and exhibited a broad specificity to simple phenolics, similar to that of the purified enzyme. Northern blot analysis showed that the SA GTase mRNA was induced both by SA and incompatible pathogens. The rapid induction timing of the mRNA by SA indicates that it belongs to the early SA response genes.  相似文献   

7.
该文旨在初步探讨水杨酸的主要结合态——葡糖基水杨酸(salicylic acid 2-O-β-D-glucose, SAG), 是否参与了高温诱导的植物耐热性信号传递过程。采用水杨酸(salicylic acid, SA)生物合成抑制剂——多效唑(paclobutrazol, PAC), 预处理豌豆(Pisum sativum)叶片, 再加以高温诱导, 结果发现与未经PAC处理的对照相比, 豌豆叶片受高温诱导的耐热性降低。同时, PAC预处理导致高温锻炼过程中SAG信号峰值消失。利用同位素标记和蛋白免疫印迹分析发现, PAC所导致的SAG信号减弱, 不仅是由于SA生物合成受到抑制, 而且还归因于水杨酸糖苷转移酶(salicylic acid glucosyltransferase, SAGT)蛋白合成和活性降低所引起的自由态SA向SAG转化的减缓。以上结果表明, SAG表现出了与自由态SA相似的信号功能, 并参与了高温锻炼诱导植物耐热性的信号传递过程。  相似文献   

8.
In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.  相似文献   

9.
The ability of burdock fructooligosaccharide (BFO), a type of linear fructooligosaccharide extracted and isolated from the roots of Arctium lappa , to induce systemic acquired resistance (SAR) was studied in cucumber seedlings. BFO strongly induced changes in salicylic acid (SA) and SA-glucoside (SAG) in BFO-treated leaves, and similar changes of SA and SAG were also found in untreated leaves of the same seedling. The level of SA in the first leaves sprayed with BFO (5.0 g/l) increased by 3.6 times after 24 h and then gradually declined from 48 to 96 h and finally decreased to a nadir at 120 h. The SAG level increased by 2.1 times at 24 h and then continued to increase to about 10.0 times as much as that in control from 96 to 120 h. The levels of SA in the untreated leaves of the same seedling only increased by 1.6–1.9 times during the period of 24–72 h followed by a decrease at 120 h, while SAG increased by 1.1 times at 24 h but steadily continued to increase to its maximum from 24 to 120 h. In summary, the patterns of expression of SA and SAG in the untreated leaf were similar to that of the treated leaf of the same seedling, while the pattern of expression of SAG was quite different from that of SA both in the treated and untreated leaves. Pretreatment with BFO reduced the lesions caused by Colletotrichum orbiculare by 56.8%. Additionally, the amount of lignin and the activities of some defensive enzymes including peroxidase, superoxide dismutase, polyphenoloxidase and β-1,3-glucanase significantly increased in the first leaves pretreated with BFO and followed with C. orbiculare inoculation. These results demonstrate that BFO can enhance the contents of endogenous SA, the resistance against C. orbiculare , and the activities of defensive enzymes of cucumber seedlings.  相似文献   

10.
Dean JV  Mohammed LA  Fitzpatrick T 《Planta》2005,221(2):287-296
The metabolism of salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv. KY 14) cell suspension cultures was examined by adding [7–14C]SA to the cell cultures for 24 h and identifying the metabolites through high performance liquid chromatography analysis. The three major metabolites of SA were SA 2-O--D-glucose (SAG), methylsalicylate 2-O--D-glucose (MeSAG) and methylsalicylate. Studies on the intracellular localization of the metabolites revealed that all of the SAG associated with tobacco protoplasts was localized in the vacuole. However, the majority of the MeSAG was located outside the vacuole. The tobacco cells contained an SA inducible SA glucosyltransferase (SAGT) enzyme that formed SAG. The SAGT enzyme was not associated with the vacuole and appeared to be a cytoplasmic enzyme. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from tobacco cell cultures. SAG uptake was stimulated eightfold by the addition of MgATP. The ATP-dependent uptake of SAG was inhibited by bafilomycin A1 (a specific inhibitor of the vacuolar H+-ATPase) and dissipation of the transtonoplast H+-electrochemical gradient. Vanadate was not an inhibitor of SAG uptake. Several -glucose conjugates were strong inhibitors of SAG uptake, whereas glutathione and glucuronide conjugates were only marginally inhibitory. The SAG uptake exhibited Michaelis–Menten type saturation kinetics with a Km and Vmax value of 11 M and 205 pmol min–1 mg–1, respectively, for SAG. Based on the transport characteristics it appears as if the vacuolar uptake of SAG in tobacco cells occurs through an H+-antiport-type mechanism.  相似文献   

11.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

12.
Salicylic acid beta-glucoside (SAG) is a storage form of a defense signal against pathogens, releasing free salicylic acid (SA), to meet the requirements in plants. Since excess SA induces locally restricted cell death following oxidative burst and Ca2+ influx in plants, the effects of SAG on cell viability, Ca2+ influx, and generation of superoxide (O2*-) were examined in suspension-cultured tobacco BY-2 cells expressing aequorin. Among SA-related chemicals tested, only SAG induced the slow and long-lasting O2*- generation, although SAG was less active in acute O2*- generation, Ca2+ influx and induction of cell death. The prolonging action of SAG is likely due to gradual release of SA and the data suggested that a peroxidase-dependent reaction is involved. Notably, pretreatment with low-dose SA (50 micromu) enhanced the response to SAG by 2.5-fold. There are four possible secondary messengers in early SA signaling detectable in the BY-2 culture, namely O2*-, H2O2, Ca2+ and protein kinase (PK). If these messengers are involved in the low-dose SA-dependent priming for SAG response, they should be inducible by low-dose SA. Among the four SA-inducible signaling events, PK activation was excluded from the low-dose SA action since a much higher SA dose (> 0.4 mmu) was required for PK activation.  相似文献   

13.
Salicylic acid has a role in regulating gene expression during leaf senescence   总被引:19,自引:0,他引:19  
Leaf senescence is a complex process that is controlled by multiple developmental and environmental signals and is manifested by induced expression of a large number of different genes. In this paper we describe experiments that show, for the first time, that the salicylic acid (SA)-signalling pathway has a role in the control of gene expression during developmental senescence. Arabidopsis plants defective in the SA-signalling pathway (npr1 and pad4 mutants and NahG transgenic plants) were used to investigate senescence-enhanced gene expression, and a number of genes showed altered expression patterns. Senescence-induced expression of the cysteine protease gene SAG12, for example, was conditional on the presence of SA, together with another unidentified senescence-specific factor. Changes in gene expression patterns were accompanied by a delayed yellowing and reduced necrosis in the mutant plants defective in SA-signalling, suggesting a role for SA in the cell death that occurs at the final stage of senescence. We propose the presence of a minimum of three senescence-enhanced signalling factors in senescing leaves, one of which is SA. We also suggest that a combination of signalling factors is required for the optimum expression of many genes during senescence.  相似文献   

14.
We have recently cloned and characterized an evolutionarily conserved gene, Sensitive to Apoptosis Gene (SAG), which encodes a redox-sensitive antioxidant protein that protects cells from apoptosis induced by redox agents. The SAG protein was later found to be the second family member of ROC/Rbx/Hrt, a component of the Skp1-cullin-F box protein (SCF) E3 ubiquitin ligase, being required for yeast growth and capable of promoting cell growth during serum starvation. Here, we report the genomic structure of the SAG gene that consists of four exons and three introns. We also report the characterization of a SAG splicing variant (SAG-v), that contains an additional exon (exon 2; 264 bp) not present in wildtype SAG. The inclusion of exon 2 disrupts the SAG ORF and gives rise to a protein of 108 amino acids that contains the first 59 amino acids identical to SAG and a 49-amino acid novel sequence at the C terminus. The entire RING-finger domain of SAG was not translated because of several inframe stop codons within the exon 2. The SAG-v protein was expressed in multiple human tissues as well as cell lines, but at a much lower level than wildtype SAG. Unlike SAG, SAG-v was not able to rescue yeast cells from lethality in a ySAG knockout, nor did it bind to cullin-1 or have ligase activity, probably because of the lack of the RING-finger domain. Finally, we report the identification of two SAG family pseudogenes, SAGP1 and SAGP2, that share 36% or 47% sequence identity with ROC1/Rbx1/Hrt1 and 30% or 88% with SAG, respectively. Both genes are intronless with two inframe stop codons.  相似文献   

15.
In soybean ( Glycine max L.), salicylic acid (SA) is converted primarily to SA 2- O - β - d -glucose (SAG) in the cytoplasm and then accumulates exclusively in the vacuole. However, the mechanism involved in the vacuolar transport of SAG has not been investigated. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from etiolated soybean hypocotyls. The uptake of SAG was stimulated about six-fold when MgATP was included in the assay media. In contrast, the uptake of SA was only stimulated 1.25-fold by the addition of MgATP and was 2.2-fold less than the uptake of SAG providing an indication that the vacuolar uptake of SA is promoted by glucosylation. The ATP-dependent uptake of SAG was inhibited by increasing concentrations of vanadate (64% inhibition in the presence of 500 μ M ) but was not very sensitive to inhibition by bafilomycin A1 (a specific inhibitor of vacuolar H+-ATPase; EC 3.6.1.3), and dissipation of the transtonoplast H+-electrochemical gradient. The SAG uptake exhibited Michaelis–Menten-type saturation kinetics with a K m value of 90 μ M for SAG. SAG uptake was inhibited 60% by β ‐estradiol 17-( β - d -glucuronide), but glutathione conjugates and uncharged glucose conjugates were only slightly inhibitory. Based on the characteristics of SAG uptake into soybean tonoplast vesicles it is likely that this uptake occurs through an ATP-binding cassette transporter-type mechanism. However, this vacuolar uptake mechanism is not universal since the uptake of SAG by red beet ( Beta vulgaris L) tonoplast vesicles appears to involve an H+-antiport mechanism.  相似文献   

16.
Salicylic acid (SA) has been proposed to be an endogenous signalfor systemic acquired resistance to infection by pathogens inplants. In general, most SA is found in an inactive form asSA ß-glucoside (SAG). SAG seems to be a storage formof SA from which bioactive SA can be generated. Recent reportsindicate that ß-glucosidase might be involved in regulatingthe signaling activity of phytohormones. Therefore, it seemslikely that SA ß-glucosidase, the enzyme that hydrolyzesSAG to yield free SA, might also play an important role by regulatingthe level of free SA. Since hydrolysis of SAG seems to occurin intercellular spaces, we attempted to isolate SA ß-glucosidaseactivity from the intercellular spaces of SA-treated tobaccoleaves, where we found considerable amounts of the enzymaticactivity. Furthermore, increased levels of SA and SA ß-glucosidaseactivity were found in the leaves after treatment with exogenousSA. The role of SA ß-glucosidase in plant defensesystems is discussed. (Received November 15, 1994; Accepted January 20, 1995)  相似文献   

17.
The PR-2d promoter/uidA (GUS) gene construct was introduced into the cucumber (Cucumis sativus L.) genome and several transgenic lines were produced. Activation of the PR-2d promoter was investigated in these plants in response to inoculation with fungal pathogens and after salicylic acid (SA) or cold treatments. Treatment with exogenous SA increased GUS activity 2 to 11 fold over that of the control. Endogenous SA and its conjugate salicylic acid glucoside (SAG) rose in parallel after inoculation with the fungal pathogen Pseudoperonospora cubensis, with SAG becoming the predominant form. The free SA levels increased 15 fold above the basal level at 5 dpi and preceded the induction of the PR-2d promoter by five days, which occurred at 10 dpi with a 12 fold increase over the control. Inoculation with another fungal pathogen, Erysiphe polyphage, increased GUS activity 4 to 44 fold over that of the control. During normal development of flowers in the cucumber, the PR-2d/uidA gene expressed in the floral organs was similar to that of the primary host. In addition, we present the first evidence that the PR-2d promoter was induced (624 fold) under cold stress. We demonstrate that in the heterologous state the gene construct was expressed according to the signalling pattern of the native species and was stably transmitted to progeny over four generations.  相似文献   

18.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

19.
SAG (sensitive to apoptosis gene) was cloned as an inducible gene by 1,10-phenanthroline (OP), a redox-sensitive compound and an apoptosis inducer. SAG encodes a novel zinc RING finger protein that consists of 113 amino acids with a calculated molecular mass of 12.6 kDa. SAG is highly conserved during evolution, with identities of 70% between human and Caenorhabditis elegans sequences and 55% between human and yeast sequences. In human tissues, SAG is ubiquitously expressed at high levels in skeletal muscles, heart, and testis. SAG is localized in both the cytoplasm and the nucleus of cells, and its gene was mapped to chromosome 3q22-24. Bacterially expressed and purified human SAG binds to zinc and copper metal ions and prevents lipid peroxidation induced by copper or a free radical generator. When overexpressed in several human cell lines, SAG protects cells from apoptosis induced by redox agents (the metal chelator OP and zinc or copper metal ions). Mechanistically, SAG appears to inhibit and/or delay metal ion-induced cytochrome c release and caspase activation. Thus, SAG is a cellular protective molecule that appears to act as an antioxidant to inhibit apoptosis induced by metal ions and reactive oxygen species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号