首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two protomers of the purified regulatory subunit from porcine cAMP-dependent protein kinase I have been shown to be covalently cross-linked by interchain disulfide bonding. Limited proteolysis which cleaves the polypeptide chain into two fragments demonstrated that the disulfide bonding was associated exclusively with the fragment that corresponded to the NH2-terminal region of the polypeptide chain. This NH2-terminal fragment accounted for approximately 15 to 20% of the molecule. The disulfide bonding was further characterized by alkylating the cysteines in the native regulatory subunit. Following oxidation with performic acid, each regulatory subunit contained 7 cysteic acid residues; however, under denaturing conditions, but without prior reduction, only 5 cysteine residues could be alkylated with iodoacetic acid. Following limited proteolysis, all five of these cysteines were associated with the larger COOH-terminal, cAMP binding domain. In contrast, if the denatured subunit was first reduced prior to alkylation, all 7 cysteine residues were alkylated. The 2 cysteines that were only accessible to alkylation after prior reduction were both associated with the NH2-terminal end of the polypeptide chain ultimately with a 5,400 peptide. Alkylation of the isolated, denatured NH2-terminal domain with iodoacetic acid resulted in no covalent modification unless the fragment was first reduced with dithiothreitol. The NH2-terminal and COOH-terminal domains were shown to be linked by a region of the polypeptide chain that is rich in both proline and arginine. It is the arginine-rich site that is readily prone to proteolytic cleavage.  相似文献   

2.
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.  相似文献   

3.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

4.
The extracellular loop 3 (EL-3) of SLC4 Na+-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na+-HCO3 cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys583-Cys585 and Cys617-Cys642, respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.  相似文献   

5.
Krokhin OV  Cheng K  Sousa SL  Ens W  Standing KG  Wilkins JA 《Biochemistry》2003,42(44):12950-12959
Integrins are one of the major mediators of cellular adherence. Structurally the component alpha and beta chains are characterized by extensive intrachain disulfide bonding. The assignment of these bonds is currently based on homology with the chains of the integrin alphaIIbbeta3. However, recent crystallographic analysis of the soluble alphaVbeta3 construct indicates that the alphaV chain displays bonding patterns different from those predicted for alphaIIb. In an effort to define the disulfide bonding patterns in integrins, we have used mass spectrometric based approaches to map the human alpha3, alpha5, alphaV, and alphaIIb. The results indicate that there are differences in the disulfide patterns of the alpha chains. These do not correlate with the integrin capacity to bind ligands as all integrins used in the present study displayed functional activity. The differences were observed in the bonding patterns linking the heavy (H) and light (L) components of the of the alpha chains. It was also possible to assign the location in alpha5 of an additional disulfide bond involving a pair of cysteines not present in alphaV or alphaIIb. This second bond between the H and L chains of alpha5 has not been previously described. These results indicate that not all integrin species display the same disulfide bonding patterns. They also highlight the need for caution in the use of assignments based on sequence homology.  相似文献   

6.
SUMMARY: Disulfide by Design is a program for the design of novel disulfide bonds in proteins. Protein structure files in PDB format are analyzed to identify residue pairs that are likely to form a disulfide bond if the respective amino acids are mutated to cysteines. The output displays residue pairs having the appropriate geometric characteristics for disulfide formation and provides automated generation of modified PDB files including modeled disulfides. Validation demonstrates a high level of accuracy for the algorithm. AVAILABILITY: http://www.ehscenter.org/dbd/ Supplementary information: http://www.ehscenter.org/dbd/  相似文献   

7.
G protein-coupled receptors (GPCRs) are integral membrane proteins involved in cellular signaling and constitute major drug targets. Despite their importance, the relationship between structure and function of these receptors is not well understood. In this study, the role of extracellular disulfide bonds on the trafficking and ligand-binding activity of the human A2A adenosine receptor was examined. To this end, cysteine-to-alanine mutations were conducted to replace individual and both cysteines in three disulfide bonds present in the first two extracellular loops. Although none of the disulfide bonds were essential for the formation of plasma membrane-localized active GPCR, loss of the disulfide bonds led to changes in the distribution of the receptor within the cell and changes in the ligand-binding affinity. These results indicate that in contrast to many class A GPCRs, the extracellular disulfide bonds of the A2A receptor are not essential, but can modulate the ligand-binding activity, by either changing the conformation of the extracellular loops or perturbing the interactions of the transmembrane domains.  相似文献   

8.
The locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII were determined by sequence analysis of fragments produced by chemical and enzymatic digestions. The A1 and A2 domains of the heavy chain and the A3 domain of the light chain contain one free cysteine and two disulfide bonds, whereas the C1 and C2 domains of the light chain have one disulfide bond and no free cysteine. The positions of these disulfide bonds are conserved in factor V and ceruloplasmin except that the second disulfide bond in the A3 domain is missing in both factor V and ceruloplasmin. The positions of the three free cysteines of factor VIII are the same as three of the four cysteines present in ceruloplasmin. However, the positions of the free cysteines in factor VIII and ceruloplasmin are not conserved in factor V.  相似文献   

9.
The amino-terminal domain of class B G protein-coupled receptors contains six conserved cysteine residues involved in structurally and functionally critical disulfide bonds. The mapping of these bonds has been unclear, with one pattern based on biochemical and NMR structural characterizations of refolded, nonglycosylated amino-terminal fragments, and another pattern derived from functional characterizations of intact receptors having paired cysteine mutations. In the present study, we determined the disulfide bonding pattern of the prototypic class B secretin receptor by applying the same paired cysteine mutagenesis approach and confirming the predicted bonding pattern with proteolytic cleavage of intact functional receptor. As expected, systematic mutation to serine of the six conserved cysteine residues within this region of the secretin receptor singly and in pairs resulted in loss of function of most constructs. Notable exceptions were single mutations of the 4th and 6th cysteine residues and paired mutations involving the 1st and 3rd, 2nd and 5th, and 4th and 6th conserved cysteines, with secretin eliciting statistically significant cAMP responses above basal levels of activation for each of these constructs. Immunofluorescence microscopy confirmed similar levels of plasma membrane expression for each of the mutated receptors. Furthermore, cyanogen bromide cleaved a series of wild type and mutant secretin receptors, yielding patterns that agreed with our paired cysteine mutagenesis results. In conclusion, these data suggest the same pattern of disulfide bonding as that predicted previously by NMR and thus support a consistent pattern of amino-terminal disulfide bonds in class B G protein-coupled receptors.  相似文献   

10.
The oxidative folding, particularly the arrangement of disulfide bonds of recombinant extracellular N-terminal domains of the corticotropin-releasing factor receptor type 2a bearing five cysteines (C2 to C6), was investigated. Depending on the position of a His-tag, two types of disulfide patterns were found. In the case of an N-terminal His-tag, the disulfide bonds C2-C3 and C4-C6 were found, leaving C5 free, whereas the C-terminal position of the His-tag led to the disulfide pattern C2-C5 and C4-C6, and leaving C3 free. The latter pattern is consistent with the disulfide arrangement of the extracellular N-terminal domain of the corticotropin-releasing factor (CRF) receptor type 1, which has six cysteines (C1 to C6) and in which C1 is paired with C3. However, binding data of the two differently disulfide-bridged domains show no significant differences in binding affinities to selected ligands, indicating the importance of the C-terminal portion of the N-terminal receptor domains, particularly the disulfide bond C4-C6 for ligand binding.  相似文献   

11.
The physicochemical mechanism of protein folding has been elucidated by the island model, describing a growth type of folding. The folding pathway is closely related with nucleation on the polypeptide chain and thus the formation of small local structures or secondary structures at the earliest stage of folding is essential to all following steps. The island model is applicable to any protein, but a high precision of secondary structure prediction is indispensable to folding simulation. The secondary structures formed at the earliest stage of folding are supposed to be of standard form, but they are usually deformed during the folding process, especially at the last stage, although the degree of deformation is different for each protein. Ferredoxin is an example of a protein having this property. According to X-ray investigation (1FDX), ferredoxin is not supposed to have secondary structures. However, if we assumed that in ferredoxin all the residues are in a coil state, we could not attain the correct structure similar to the native one. Further, we found that some parts of the chain are not flexible, suggesting the presence of secondary structures, in agreement with the recent PDB data (1DUR). Assuming standard secondary structures (-helices and -strands) at the nonflexible parts at the early stage of folding, and deforming these at the final stage, a structure similar to the native one was obtained. Another peculiarity of ferredoxin is the absence of disulfide bonds, in spite of its having eight cysteines. The reason cysteines do not form disulfide bonds became clear by applying the lampshade criterion, but more importantly, the two groups of cysteines are ready to make iron complexes, respectively, at a rather later stage of folding. The reason for poor prediction accuracy of secondary structure with conventional methods is discussed.  相似文献   

12.
cGMP-dependent protein kinase (G-kinase) and the regulatory subunit of type I (RI) cAMP-dependent protein kinase (A-kinase) both contain a phosphorylation site located near the NH2 terminus of each enzyme. These sites can be utilized as convenient markers for the determination of the position of an amino acid residue susceptible to either chemical or enzymatic digestion. Using the tryptophan-specific reagent, N-chlorosuccinimide, the approximate location along the polypeptide chain of six reactive tryptophans in G-kinase and three reactive residues in RI were identified. Similarly, cleavage with cyanide was used to locate free and disulfide-bonded cysteines in both proteins. The approximate positions of nine cysteines in G-kinase were determined along with the location of the interchain disulfide bond and an intrachain disulfide bond. RI was found to contain three cyanide-reactive cysteines, two of which are involved in interchain disulfide bonding. A comparison of the positions of the cysteines and tryptophans determined by chemical cleavage in G-kinase and RI, with the positions of cysteine and tryptophan in the known sequence of the type II A-kinase, support the structural relationships between these enzymes. Comparison with subsequently reported primary sequences of all three enzymes indicates the limits of precision of this chemical cleavage procedure.  相似文献   

13.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

14.
以2002年4月份的Culled Protein Data Bank数据库中的639条蛋白质多肽链为研究对象,统计分析了其含有的584条二硫键的形成特征,发现半胱氨酸氧化还原状态表现出明显的协同性现象:含有二硫键的蛋白质中几乎所有的半胱氨酸都以氧化态形式存在。这一协同性可以通过蛋白质全局水平上的20种氨基酸组分的百分含量很好地加以说明,由此来预测半胱氨酸的氧化还原状态准确率最高可达84.5%。结果表明半胱氨酸是否形成二硫键主要取决于蛋白质全局的而非局部的结构信息。  相似文献   

15.
The non-structural glycoprotein (SGP) of Ebola virus (EboV) is secreted in large amounts from infected cells as a disulfide-linked homodimer. In this communication, highly purified SGP, derived from Vero E6 cultures infected with the Zaire species of EboV, was used to determine the correct localization of inter- and intrachain disulfide bonds. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis of proteolytic cleavage fragments indicates that all cysteines (six per monomeric unit) form unique disulfide bonds. Monomers of the SGP homodimer are joined in a parallel manner by two intersubunit disulfide bonds formed between paired N-terminal and C-terminal cysteines (C53-C53' and C306-C306'). The remaining cysteines are involved in intrachain disulfide bonding (paired as C108-C135 and C121-C147), which resembles the disulfide bond topology of fibronectin type II domains. The findings presented here provide the foundation for future studies aimed at defining the structural and functional properties of SGP.  相似文献   

16.
Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.  相似文献   

17.
An energy potential is constructed and trained to succeed in fold recognition for the general population of proteins as well as an important class which has previously been problematic: small, disulfide-bearing proteins. The potential is modeled on solvation, with the energy a function of side chain burial and the number of disulfide bonds. An accurate disulfide recognition algorithm identifies cysteine pairs which have the appropriate orientation to form a disulfide bridge. The potential has 22 energy parameters which are optimized so the Protein Data Bank (PDB) structure for each sequence in a training set is the lowest in energy out of thousands of alternative structures. One parameter per amino acid type reflects burial preference and a single parameter is used in an overpacking term. Additionally, one optimized parameter provides a favorable contribution for each disulfide identified in a given protein structure. With little training, the potential is >80% accurate in ungapped threading tests using a variety of proteins. The same level of accuracy is observed in a threading test of small proteins which have disulfide bonds. Importantly, the energy potential is also successful with proteins having uncrosslinked cysteines.  相似文献   

18.
The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT(1)) and type 2 (AT(2)). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT(1) mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT(1) disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT(1) receptors. Despite retaining the same cysteines, AT(2) receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT(2) cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT(2) cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT(1) subtype. However, breaking the AT(2) disulfide bridges yielded two responses. As in AT(1) receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT(2) binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT(2) binding, mimicking DTT's effect on this subtype. Further analysis of AT(1)/AT(2) chimeric exchange mutants of these domains suggested that the AT(2) amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.  相似文献   

19.
Lu CH  Chen YC  Yu CS  Hwang JK 《Proteins》2007,67(2):262-270
Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. Therefore, the ability to infer disulfide connectivity from protein sequences will be valuable in structural modeling and functional analysis. However, to predict disulfide connectivity directly from sequences presents a challenge to computational biologists due to the nonlocal nature of disulfide bonds, i.e., the close spatial proximity of the cysteine pair that forms the disulfide bond does not necessarily imply the short sequence separation of the cysteine residues. Recently, Chen and Hwang (Proteins 2005;61:507-512) treated this problem as a multiple class classification by defining each distinct disulfide pattern as a class. They used multiple support vector machines based on a variety of sequence features to predict the disulfide patterns. Their results compare favorably with those in the literature for a benchmark dataset sharing less than 30% sequence identity. However, since the number of disulfide patterns grows rapidly when the number of disulfide bonds increases, their method performs unsatisfactorily for the cases of large number of disulfide bonds. In this work, we propose a novel method to represent disulfide connectivity in terms of cysteine pairs, instead of disulfide patterns. Since the number of bonding states of the cysteine pairs is independent of that of disulfide bonds, the problem of class explosion is avoided. The bonding states of the cysteine pairs are predicted using the support vector machines together with the genetic algorithm optimization for feature selection. The complete disulfide patterns are then determined from the connectivity matrices that are constructed from the predicted bonding states of the cysteine pairs. Our approach outperforms the current approaches in the literature.  相似文献   

20.
We constructed a gene encoding rCAS, recombinant constant and subrepeat protein, modeled after tandem repeats found in the major silk proteins synthesized by aquatic larvae of the midge, Chironomus tentans. Bacterially synthesized rCAS was purified to near homogeneity and characterized by several biochemical and biophysical methods including amino-terminal sequencing, amino acid compositional analysis, sedimentation equilibrium ultracentrifugation, and mass spectrometry. Complementing these techniques with quantitative sulfhydryl assays, we discovered that the four cysteines present in rCAS form two intramolecular disulfide bonds. Mapping studies revealed that the disulfide bonds are heterogeneous. When reduced and denatured rCAS was allowed to refold and its disulfide bonding state monitored, it again adopted a conformation with two intramolecular disulfide bonds. The inherent ability of rCAS to quantitatively form two intramolecular disulfide bonds may reflect a previously unknown feature of the in vivo silk proteins from which it is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号