首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 x 10(3) CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, < or =1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with > or =92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 x 10(5) CFU/g soil, in nonsterile soils when incubated at 30 or 37 degrees C and survived longer than 1 month when soil temperatures were < or =25 degrees C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.  相似文献   

2.
The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 × 103 CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, ≤1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with ≥92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 × 105 CFU/g soil, in nonsterile soils when incubated at 30 or 37°C and survived longer than 1 month when soil temperatures were ≤25°C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.  相似文献   

3.
High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring.  相似文献   

4.
Sources of Escherichia coli in a coastal subtropical environment   总被引:3,自引:0,他引:3  
Sources of Escherichia coli in a coastal waterway located in Ft. Lauderdale, Fla., were evaluated. The study consisted of an extensive program of field measurements designed to capture spatial and temporal variations in E. coli concentrations as well as experiments conducted under laboratory-controlled conditions. E. coli from environmental samples was enumerated by using a defined substrate technology (Colilert-18). Field sampling tasks included sampling the length of the North Fork to identify the river reach contributing high E. coli levels, autosampler experiments at two locations, and spatially intense sampling efforts at hot spots. Laboratory experiments were designed to simulate tidal conditions within the riverbank soils. The results showed that E. coli entered the river in a large pulse during storm conditions. After the storm, E. coli levels returned to baseline levels and varied in a cyclical pattern which correlated with tidal cycles. The highest concentrations were observed during high tide, whereas the lowest were observed at low tide. This peculiar pattern of E. coli concentrations between storm events was caused by the growth of E. coli within riverbank soils which were subsequently washed in during high tide. Laboratory analysis of soil collected from the riverbanks showed increases of several orders of magnitude in soil E. coli concentrations. The ability of E. coli to multiply in the soil was found to be a function of soil moisture content, presumably due to the ability of E. coli to outcompete predators in relatively dry soil. The importance of soil moisture in regulating the multiplication of E. coli was found to be critical in tidally influenced areas due to periodic wetting and drying of soils in contact with water bodies. Given the potential for growth in such systems, E. coli concentrations can be artificially elevated above that expected from fecal impacts alone. Such results challenge the use of E. coli as a suitable indicator of water quality in tidally influenced areas located within tropical and subtropical environments.  相似文献   

5.
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.  相似文献   

6.
Seven hundred thirty-nine animal strains and 662 livestock-farmer strains, consisting of Escherichia coli and enterococci, were examined for their pulsed-field gel electrophoresis (PFGE) and antimicrobial-resistance patterns. Two hundred fifty-eight and 203 PFGE patterns were found among 739 animal strains isolated from animals comprising broilers, pigs and cattle, and 662 human strains isolated from livestock farmers, respectively, from 27 farms in Japan. These results demonstrated that the PFGE patterns found among E. coli and enterococci strains from animals and livestock-farmers were heterogeneous and considerably diverse. The strains having both the identical PFGE pattern and the same drug-resistance pattern were defined as a single clone in this study. Seven types of E. coli and enterococci clones were shared among animals within the same farms and between the different farms housing the same animal species. The 25 strains (3.4%) of 739 E. coli and enterococci animal strains belonged to these seven types of clones. Only three types of E. coli clones were shared among animals between the different farms housing different animal species, but no identical E. faecalis or E. faecium clones were found between different animal species farms. The 15 strains (2.0%) of 739 E. coli and enterococci animal strains belonged to these three types of clones. Additionally, the 11 strains (1.5%) of 739 E. coli and enterococci strains isolated from animals were identical clones to strains isolated from livestock farmers of the same farm. These results suggest that the transmission of animal clones to livestock farmers or vice versa is less common.  相似文献   

7.
The variation in manure-amended soil survival capability among 18 Escherichia coli O157 strains (8 animal, 1 food, and 9 human isolates) was studied using a single sandy soil sample and a single sample of cattle manure as the inoculum carrier. The virulence profiles of E. coli O157 strains were characterized by detection of virulence determinants (73 genes, 122 probes in duplicate) by using the Identibac E. coli genotyping DNA miniaturized microarray. Metabolic profiling was done by subjecting all strains to the Biolog phenotypic carbon microarray. Survival times (calculated as days needed to reach the detection limit using the Weibull model) ranged from 47 to 266 days (median, 120 days). Survival time was significantly higher for the group of human isolates (median, 211 days; minimum [min.], 71; maximum [max.], 266) compared to the group of animal isolates (median, 70 days; min., 47; max., 249) (P = 0.025). Although clustering of human versus animal strains was observed based on pulsed-field gel electrophoresis (PFGE) patterns, no relation between survival time and the presence of virulence genes was observed. Principal component analysis on the metabolic profiling data revealed distinct clustering of short- and long-surviving strains. The oxidization rate of propionic acid, α-ketobutyric acid, and α-hydroxybutyric acid was significantly higher for the long-surviving strains than for the short-surviving strains. The oxidative capacity of E. coli O157 strains may be regarded as a phenotypic marker for enhanced survival in manure-amended soil. The large variation observed in survival is of importance for risk assessment models.  相似文献   

8.
《新西兰生态学杂志》2011,27(2):179-189
Soil characteristics were examined within and adjacent to two vegetation exclosures near Porters Pass, Canterbury retired from grazing 45 years ago. Soils were analysed for a range of simple physical (topsoil depth, bulk density), chemical (pH, exchangeable cations, P, S, total C and N) and biochemical (microbial carbon) properties to determine whether the vegetation recovery inside the exclosures was reflected in soil differences. At both sites there were few significant differences between the exclosure and the surrounding grazed area, despite vegetation recovery since exclusion of grazing. At Starvation Gully topsoil depth and Na were higher, and bulk density, pH, K, total C, total N and microbial C mass, and the microbial C to total C ratio were lower in the exclosure. At Cloudy Knell Ca, Mg, total C and N were higher and Na was lower in the exclosure. There was a marked contrast in the trends at the two sites, with slightly lower nutrient status and organic matter in the exclosure at Starvation Gully, and the reverse at Cloudy Knell. The differences between the sites probably reflect differences in the partitioning of nutrients and organic matter between vegetation, litter and soil at the two sites. The results suggest a slow rate of change of soil properties following cessation of grazing and the need to sample soils, litter and vegetation when determining trends in organic matter and chemical fertility.  相似文献   

9.
A reliable assessment of microbial indicators of fecal pollution (total coliform, Escherichia coli, and fecal streptococcus) is critical in tropical environments. Therefore, we investigated the relationship between concentrations of indicator bacteria and a chemical indicator, coprostanol (5beta-cholestan-3beta-ol), in tropical and temperate regions. Water samples were collected from the Mekong Delta, Vietnam, during wet and dry seasons, and from Tokyo, Japan, during summer, the aftermath of a typhoon, and winter. During the wet season in the Mekong Delta, higher bacterial densities were observed in rivers, probably due to the higher bacterial inputs from soil particles with runoff. In Tokyo, higher bacterial densities were usually observed during summer, followed by those in the typhoon aftermath and winter. A strong logarithmic correlation between the concentrations of E. coli and coprostanol was demonstrated in all surveys. Distinctive seasonal fluctuations were observed, as concentrations of coprostanol corresponding to 1,000 CFU of E. coli/100 ml were at their lowest during the wet season in the Mekong Delta and the typhoon aftermath in Tokyo (30 ng/liter), followed by the dry season in the Mekong Delta and the summer in Tokyo (100 ng/liter), and they were much higher during the winter in Tokyo (400 ng/liter). These results suggested that E. coli is a specific indicator of fecal contamination in both tropical and temperate regions but that the densities are affected by elevated water temperature and input from runoff of soil particles. The concurrent determination of E. coli and coprostanol concentrations could provide a possible approach to assessing the reliability of fecal pollution monitoring data.  相似文献   

10.
AIMS: To determine the fate of the enteric indicator organism, Escherichia coli, in sewage sludge (biosolids)-amended agricultural soil in relation to soil type and moisture status under controlled conditions. METHODS AND RESULTS: We enumerated Escherichia coli in soil by membrane filtration and most probable number techniques. The background concentration of E. coli was higher in sandy loam than in silty clay soil. E. coli numbers increased in soil following addition of dewatered, mesophilic anaerobically digested sludge. Escherichia coli declined to a small extent with time in both moist and air-dried unamended control soils, although decay was only highly significant (P < 0.001) in moist sandy loam (T(90) = 100 days). Removal rates were high in sludge-treated moist soil (T(90) = 20 days), but were significantly reduced in amended air-dried soil. CONCLUSIONS: Slow removal of E. coli in air-dried soil as against their rapid decay in moist soil after sludge application indicated that the soil biota are involved in pathogen reduction processes in sludge-amended soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Soil ecological mechanisms are implicated as having a critical role in the fate of enteric organisms introduced into temperate agricultural soil in sewage sludge.  相似文献   

11.
We examined whether terrestrial vertebrates affected the arbuscular mycorrhizal fungal spore communities and mycorrhizal inoculum potential (MIP) of a tropical rain forest soil by comparing plots where terrestrial vertebrates had been excluded for 3 years to adjacent control plots. We extracted spores from soil using sucrose density gradient centrifugation and assayed MIP by growing seedlings of maize ( Zea mays ) and a rain forest tree ( Flindersia brayleana ) in intact soil cores from exclosure and control plots. Control plots had significantly higher spore abundance, species richness and diversity than exclosures. Spore community composition also differed significantly between exclosure and control plots. Seedlings of both plant species grown in control cores had significantly higher arbuscular-mycorrhizal colonization than those grown in exclosure cores. This study suggests that loss of vertebrates could alter rates of mycorrhizal colonization with consequences for community and ecosystem properties.  相似文献   

12.
Questions: Is plant species richness, diversity and above‐ground standing biomass enhanced after establishing exclosures on communal grazing lands? What factors influence the effectiveness of exclosures to restore degraded native vegetation in Tigray, Ethiopia? Location: Northern Ethiopia. Methods: We used a space‐for‐time substitution approach to detect changes in plant species richness, diversity and above‐ground standing biomass after conversion of communal grazing lands to exclosures. We selected replicated (n=3) 5‐, 10‐, 15‐ and 20‐year‐old exclosures and paired each exclosure with an adjacent communal grazing land to ensure that soil and terrain conditions were as similar as possible among each pair. Results: All exclosures displayed higher plant species richness, diversity and biomass than the communal grazing lands. Differences in plant species richness and biomass between an exclosure age and adjacent communal grazing land were higher in oldest than in youngest exclosures. In exclosures, much of the variability in plant species composition and biomass was explained by a combination of edaphic (total nitrogen, phosphorus, texture and soil pH) and site (precipitation and altitude) variables (R2=0.72–0.82). Edaphic and site variables also explained much of the variability in plant species composition in communal grazing lands (R2=0.76–0.82). Our study shows that all exclosures are at an early stage of succession. The increase in economically important indigenous shrub and tree species with exclosure age suggests that, with time, a valuable afromontane forest may develop. Conclusions: Establishment of exclosures on communal grazing lands is a viable option to restore degraded native vegetation. However, before expanding exclosures, the ecological consequences of additional exclosures should be investigated as further expansion of exclosures could increase grazing pressure on remaining grazing areas. Furthermore, consideration of edaphic and site variables will help optimize selection of areas for establishment of exclosures and enhance natural regeneration in exclosures in the future.  相似文献   

13.
Abstract Molecular methods based on detection of specific DNA sequences are increasingly used to monitor microbial strains and communities in soils. Here, we report that desiccation of soil, a condition that frequently occurs in nature, may contribute considerably to dissimilarity between DNA levels and colony forming units of introduced bacteria. Three types of soil samples were supplemented with Escherichia coli or Alcaligenes eutrophus suspensions and incubated at 30°C in the presence or absence of dehydrating silica gel. Alternatively, seeded soil samples were desiccated by freeze-drying. At regular time points cells and total DNA were extracted and colony forming units and plasmid DNA were determined, respectively. These analyses showed that the decrease of the number of colony forming units was faster in desiccating than in control soil. Both in desiccating and in control soil, plasmid DNA levels were more stable than culturable counts. Long-term incubation experiments showed that in desiccating soil but not in control soil E. coli plasmid DNA remained intact and biologically active for at least 17 days after disappearance of E. coli culturable counts.  相似文献   

14.
The density of Bifidobacterium spp., fecal coliforms, Escherichia coli, and total anaerobic bacteria, acridine orange direct counts, percentages of total bacterial community activity and respiration, and 12 physical and chemical parameters were measured simultaneously at six sites for 12 months in the Mameyes River rain forest watershed, Puerto Rico. The densities of all bacteria were higher than those reported for uncontaminated temperate rivers, even though other water quality parameters would indicate that all uncontaminated sites were oligotrophic. The highest densities for all indicator bacteria were at the site receiving sewage effluent; however, the highest elevation site in the watershed had the next highest densities. Correlations between bacterial densities, nitrates, temperature, phosphates, and total phosphorus indicated that all viable counts were related to nutrient levels, regardless of the site sampled. In situ diffusion chamber studies at two different sites indicated that E. coli could survive, remain physiologically active, and regrow at rates that were dependent on nutrient levels of the ambient waters. Bifidobacterium adolescentis did not survive at either site but did show different rates of decline and physiological activity at the two sites. Bifidobacteria show promise as a better indicator of recent fecal contamination in tropical freshwaters than E. coli or fecal coliforms; however, the YN-6 medium did not prove to be effective for enumeration of bifidobacteria. The coliform maximum contaminant levels for assessing water usability for drinking and recreation appear to be unworkable in tropical freshwaters.  相似文献   

15.
The density of Bifidobacterium spp., fecal coliforms, Escherichia coli, and total anaerobic bacteria, acridine orange direct counts, percentages of total bacterial community activity and respiration, and 12 physical and chemical parameters were measured simultaneously at six sites for 12 months in the Mameyes River rain forest watershed, Puerto Rico. The densities of all bacteria were higher than those reported for uncontaminated temperate rivers, even though other water quality parameters would indicate that all uncontaminated sites were oligotrophic. The highest densities for all indicator bacteria were at the site receiving sewage effluent; however, the highest elevation site in the watershed had the next highest densities. Correlations between bacterial densities, nitrates, temperature, phosphates, and total phosphorus indicated that all viable counts were related to nutrient levels, regardless of the site sampled. In situ diffusion chamber studies at two different sites indicated that E. coli could survive, remain physiologically active, and regrow at rates that were dependent on nutrient levels of the ambient waters. Bifidobacterium adolescentis did not survive at either site but did show different rates of decline and physiological activity at the two sites. Bifidobacteria show promise as a better indicator of recent fecal contamination in tropical freshwaters than E. coli or fecal coliforms; however, the YN-6 medium did not prove to be effective for enumeration of bifidobacteria. The coliform maximum contaminant levels for assessing water usability for drinking and recreation appear to be unworkable in tropical freshwaters.  相似文献   

16.
In the first part of the present study the coliform and enteric bacilli in the environment of calves with colibacillosis were examined. The occurrence, number, and pathogenic properties of Escherichia coli in barnyard soils were obtained from six cattle ranches. The O and K serogroups of E. coli isolates obtained from the feces of calves with colibacillosis born at these cattle ranches were determined, and their serotypes were compared with the E. coli O and K serotypes found in soils. The results showed a reservoir of potentially pathogenic E. coli in barnyard soils contaminated with bovine feces. For the second part of this study, 6 healthy calves and 51 calves with colibacillosis were studied. The numbers of total aerobic heterotrophic bacteria, total streptococci, fecal streptococci, total coliforms, and fecal coliforms in the feces of calves were determined. In addition, coliform and enteric bacilli from the feces of both healthy and diseased calves were identified, and their indole, methyl red, Voges-Proskauer, citrate (IMViC) types were described. In parallel, the IMViC types of coliform and enteric bacilli isolated from barnyard soils previously contaminated with bovine feces were compared with those isolated from uncontaminated soils. All fecal specimens were also examined for the presence of rotavirus. No significant effect on the numbers of the bacterial types was found. The results suggest that the predominant IMViC types found in the feces of calves with colibacillosis originate from the soil. From this study it is apparent that the occurrence, number, and survival of E. coli in barnyard soils is related to ranch husbandry and sanitary practices.  相似文献   

17.
In the first part of the present study the coliform and enteric bacilli in the environment of calves with colibacillosis were examined. The occurrence, number, and pathogenic properties of Escherichia coli in barnyard soils were obtained from six cattle ranches. The O and K serogroups of E. coli isolates obtained from the feces of calves with colibacillosis born at these cattle ranches were determined, and their serotypes were compared with the E. coli O and K serotypes found in soils. The results showed a reservoir of potentially pathogenic E. coli in barnyard soils contaminated with bovine feces. For the second part of this study, 6 healthy calves and 51 calves with colibacillosis were studied. The numbers of total aerobic heterotrophic bacteria, total streptococci, fecal streptococci, total coliforms, and fecal coliforms in the feces of calves were determined. In addition, coliform and enteric bacilli from the feces of both healthy and diseased calves were identified, and their indole, methyl red, Voges-Proskauer, citrate (IMViC) types were described. In parallel, the IMViC types of coliform and enteric bacilli isolated from barnyard soils previously contaminated with bovine feces were compared with those isolated from uncontaminated soils. All fecal specimens were also examined for the presence of rotavirus. No significant effect on the numbers of the bacterial types was found. The results suggest that the predominant IMViC types found in the feces of calves with colibacillosis originate from the soil. From this study it is apparent that the occurrence, number, and survival of E. coli in barnyard soils is related to ranch husbandry and sanitary practices.  相似文献   

18.
Escherichia coli is an important member of the gastrointestinal tract of humans and warm-blooded animals (primary habitat). In the external environment outside the host (secondary habitat), it is often considered to be only a transient member of the microbiota found in water and soil, although recent evidence suggests that some strains can persist in temperate soils and freshwater beaches. Here we quantified the population genetic structure of E. coli from a longitudinal collection of environmental strains isolated from six freshwater beaches along Lake Huron and the St. Clair River in Michigan. Multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) revealed extensive genetic diversity among 185 E. coli isolates with an average of 40 alleles per locus. Despite evidence for extensive recombination generating new alleles and genotypic diversity, several genotypes marked by distinct MLEE and MLST profiles were repeatedly recovered from separate sites at different times. A PCR-based phylogrouping technique showed that the persistent, naturalized E. coli belonged to the B1 group. These results support the hypothesis that persistent genotypes have an adaptive advantage in the secondary habitat outside the host.  相似文献   

19.
From October 1999 to July 2001, a prospective cohort study was conducted to assess the intestinal Escherichia coli population dynamics of 23 sexually active couples. We tested the hypothesis that intestinal persistence and predominance of specific E. coli strains, co-colonization of sex partners with the same E. coli strain, and the intestinal diversity of fecal E. coli, contribute to recurrent urinary tract infection (UTI). E. coli isolates causing UTI, asymptomatic bacteriuria (ABU), or intestinal co-colonization were evaluated by ERIC2 PCR and compared with strains recovered exclusively from stool samples with respect to intestinal persistence, predominance, and diversity. Contrary to our hypothesis, UTI-causing strains exhibited similar levels of intestinal persistence and predominance as did fecal strains, and UTI episodes were not associated with shifts in fecal E. coli diversity. In contrast, intestinal co-colonization strains exhibited greater persistence and predominance than did fecal strains and were more likely to cause ABU, and co-colonization episodes were associated with significantly increased fecal E. coli diversity. Nonetheless, intestinal co-colonization strains were not associated with UTI. These findings suggest that E. coli strains involved in co-colonization may be more important contributors to intestinal E. coli dynamics than to UTI pathogenesis.  相似文献   

20.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号