首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PEG-modified recombinant mammalian urate oxidase (PEG-uricase) is being developed as a treatment for patients with chronic gout who are intolerant of, or refractory to, available therapy for controlling hyperuricemia. In an open-label phase I trial, single subcutaneous injections of PEG-uricase (4 to 24 mg) were administered to 13 such subjects (11 had tophaceous gout), whose plasma uric acid concentration (pUAc) was 11.3 ± 2.1 mg/dl (mean ± SD). By day seven after injection of PEG-uricase, pUAc had declined by an average of 7.9 mg/dl and had normalized in 11 subjects, whose mean pUAc decreased to 2.8 ± 2.2 mg/dl. At doses of 8, 12, and 24 mg, the mean pUAc at 21 days after injection remained no more than 6 mg/dl. In eight subjects, plasma uricase activity was still measurable at 21 days after injection (half-life 10.5 to 19.9 days). In the other five subjects, plasma uricase activity could not be detected beyond ten days after injection; this was associated with the appearance of relatively low-titer IgM and IgG antibodies against PEG-uricase. Unexpectedly, these antibodies were directed against PEG itself rather than the uricase protein. Three PEG antibody-positive subjects had injection-site reactions at 8 to 9 days after injection. Gout flares in six subjects were the only other significant adverse reactions, and PEG-uricase was otherwise well tolerated. A prolonged circulating life and the ability to normalize plasma uric acid in markedly hyperuricemic subjects suggest that PEG-uricase could be effective in depleting expanded tissue stores of uric acid in subjects with chronic or tophaceous gout. The development of anti-PEG antibodies, which may limit efficacy in some patients, is contrary to the general assumption that PEG is non-immunogenic. PEG immunogenicity deserves further investigation, because it has potential implications for other PEGylated therapeutic agents in clinical use.  相似文献   

2.
PEG-modified recombinant mammalian urate oxidase (PEG-uricase) is being developed as a treatment for patients with chronic gout who are intolerant of, or refractory to, available therapy for controlling hyperuricemia. In an open-label phase I trial, single subcutaneous injections of PEG-uricase (4 to 24 mg) were administered to 13 such subjects (11 had tophaceous gout), whose plasma uric acid concentration (pUAc) was 11.3 +/- 2.1 mg/dl (mean +/- SD). By day seven after injection of PEG-uricase, pUAc had declined by an average of 7.9 mg/dl and had normalized in 11 subjects, whose mean pUAc decreased to 2.8 +/- 2.2 mg/dl. At doses of 8, 12, and 24 mg, the mean pUAc at 21 days after injection remained no more than 6 mg/dl. In eight subjects, plasma uricase activity was still measurable at 21 days after injection (half-life 10.5 to 19.9 days). In the other five subjects, plasma uricase activity could not be detected beyond ten days after injection; this was associated with the appearance of relatively low-titer IgM and IgG antibodies against PEG-uricase. Unexpectedly, these antibodies were directed against PEG itself rather than the uricase protein. Three PEG antibody-positive subjects had injection-site reactions at 8 to 9 days after injection. Gout flares in six subjects were the only other significant adverse reactions, and PEG-uricase was otherwise well tolerated. A prolonged circulating life and the ability to normalize plasma uric acid in markedly hyperuricemic subjects suggest that PEG-uricase could be effective in depleting expanded tissue stores of uric acid in subjects with chronic or tophaceous gout. The development of anti-PEG antibodies, which may limit efficacy in some patients, is contrary to the general assumption that PEG is non-immunogenic. PEG immunogenicity deserves further investigation, because it has potential implications for other PEGylated therapeutic agents in clinical use.  相似文献   

3.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

4.
The peroxisomal enzyme urate oxidase plays a pivotal role in the degradation of purines in both prokaryotes and eukaryotes. However, knowledge about the purine-induced expression of the encoding gene is lacking in vertebrates. These are the first published sequences of fish urate oxidase, which were predicted from PCR amplified liver cDNAs of Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and African lungfish (Protopterus annectens). Sequence alignment of different vertebrate urate oxidases revealed amino acid substitutions of putative functional importance in the enzyme of chicken and lungfish. In the adult salmon, expression of urate oxidase mRNA predominated in liver, but was also identified in several nonhepatic organs including brain, but not in skeletal muscle and kidney. Juvenile salmon fed diets containing bacterial protein meal (BPM) rich in nucleic acids showed a significant increase in liver urate oxidase enzyme activity, and urea concentrations in plasma, muscle and liver were elevated. Whereas salmon fed the 18% BPM diet showed a nonsignificant increase in liver mRNA levels of urate oxidase compared with the 0% BPM-fed fish, no further increase in mRNA levels was found in fish receiving 36% BPM. The discrepancy between urate oxidase mRNA and enzyme activity was explained by rapid mRNA degradation or alternatively, post-translational control of the activity. Although variable plasma and liver levels of urate were detected, the substrate increased only slightly in 36% BPM-fed fish, indicating that the uricolytic pathway of Atlantic salmon is intimately regulated to handle high dietary purine levels.  相似文献   

5.
The tissue-specific enzyme urate oxidase is confined exclusively to the Malpighian tubules of Drosophila melanogaster and expressed only in the third-instar larva and the adult. Shortly before pupariation urate oxidase activity declines precipitously and is not detectable 24 hours later. That 20-hydroxyecdysone is the factor that triggers the disappearance of urate oxidase activity in late third-instar larvae is demonstrated using the temperature sensitive mutant ecd1 which at the nonpermissive temperature of 29°C fails to accumulate a sufficient concentration of 20-hydroxyecdysone necessary for puparium formation and thus remains a third-instar larva for 1 to 2 weeks before death. Both the life cycle and the temporal profile of urate oxidase activity in ecd1 larvae at 19°C is identical to that of the wild type. However, at 29°C ecd1 third-instar larvae retain high urate oxidase activity. A precipitous decline in urate oxidase activity is observed when ecd1 larvae at 29°C are fed 20-hydroxyecdysone. These data implicate 20-hydroxyecdysone in the process that controls the rapid decline of urate oxidase activity at the time of puparium formation. In whole homogenates of Malpighian tubules, the urate oxidase polypeptide was identified in SDS-polyacrylamide gels by its Rf with respect to homogeneously pure Drosophila urate oxidase and also by immunoprecipitation with rabbit anti-Drosophila urate oxidase IgG. Throughout development the amount of the urate oxidase polypeptide is correlated with the magnitude of urate oxidase activity.  相似文献   

6.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

7.
The cortex of soybean ( Glycine max L. cv. Centennial) nodules contain an organellerich layer of vascular parenchyma tissue, which encircles the elaborate vascular tissue of the nodule. Peroxisomes with small, electron-opaque nucleoids are found in the vascular parenchyma cells. Positive cytochemical staining for catalase (EC 1.11.1.6) confirms their morphological identification as peroxisomes. Activities of both glycolate oxidase (EC 1.1.3.1) and urate oxidase (EC 1.7.3.3) were detected cytochemically in these peroxisomes. Nodule-specific urate oxidase was localized principally in the nucleoid region of these vascular parenchyma peroxisomes, as indicated by immunogold labelling using antibodies against nodulin-35, the nodule-specific urate oxidase. The density of urate oxidase immunogold labelling in the vascular parenchyma peroxisome nucleoid is similar to that of the more well-characterized interstitial cell peroxisomes of the infected zone. These results show that the induction of nodule-specific urate oxidase may be induced in tissue outside of the infected zone.  相似文献   

8.
Urate oxidase catalyzes the oxidation of uric acid with poor solubility to produce 5-hydroxyisourate and allantoin. Since allantoin is excreted in vivo, urate oxidase has the potential to be a therapeutic target for the treatment of gout. However, its severe immunogenicity limits its clinical application. Furthermore, studies on the structure-function relationships of urate oxidase have proven difficult. We developed a method for genetically incorporating p-azido-L-phenylalanine into target protein in Escherichia coli in a site-specific manner utilizing a tyrosyl suppressor tRNA/aminoacyl-tRNA synthetase system. We substituted p-azido-L-phenylalanine for Phe(170) or Phe(281) in urate oxidase. The products were purified and their enzyme activities were analyzed. In addition, we optimized the system by adding a "Shine-Dalgarno (SD) sequence" and tandem suppressor tRNA. This method has the benefit of site-specifically modifying urate oxidase with homogeneous glycosyl and PEG derivates, which can provide new insights into structure-function relationships and improve pharmacological properties of urate oxidase.  相似文献   

9.
Urate oxidase (EC 1.7.3.3) of Chlamydomonas reinhardii cells grown on purines and purine derivatives has been partially characterized. Crude enzyme preparations have a pH optimum of 9.0, require O2 for activity, have an apparent Km of 12 μ M for urate, and are inhibited by high concentrations of this substrate. Enzyme activity was particularly sensitive to metal ion chelating agents like cyanide, cupferron, diethyldithiocarbamate and o -phenanthroline, and to structural analogues of urate like hypoxanthine and xanthine. Chlamydomonas cells grow phototrophically on adenine, guanine, hypoxanthine, xanthine, urate, allantoin or allantoate as sole nitrogen source, indicating that in this alga the standard pathway of aerobic degradation of purines of higher plants, animals and many microorganisms operates. As deduced from experiments in vivo , urate oxidase from Chlamydomonas is repressed in the presence of ammonia or nitrate.  相似文献   

10.
The conversion of xanthine dehydrogenase to a free radical producing oxidase is an important component of oxygen-mediated tissue injury. Current assays for these enzymes are of limited sensitivity, making it difficult to analyze activities in organ biopsies or cultured cells. The xanthine oxidase-catalyzed conversion of pterin (2-amino-4-hydroxypteridine) to isoxanthopterin provides the basis for a fluorometric assay which is 100-500 times more sensitive than the traditional spectrophotometric assay of urate formation from xanthine. Enzyme activity as low as 0.1 pmol min-1 ml-1 can be measured with the fluorometric pterin assay. Xanthine oxidase is assayed in the presence of pterin only, while combined xanthine dehydrogenase plus oxidase activity is determined with methylene blue which replaces NAD+ as an electron acceptor. The relative proportions and specific activities of xanthine oxidase and dehydrogenase determined by the fluorometric pterin assay are comparable with the spectrophotometric measurement of activities present in rat liver, intestine, kidney, and plasma. The assay has been successfully applied to brain, human kidney, and cultured mammalian cells, where xanthine dehydrogenase and oxidase activities are too low to detect spectrophotometrically.  相似文献   

11.
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.  相似文献   

12.
Using the cDNA and selected genomic probes of rat urate oxidase, we have screened the human genomic library and isolated seven clones; one clone (clone 13) contained exonic regions which correspond to the exons 5, 6, and 7 of rat urate oxidase gene. The nucleotide sequence was determined for these three exons and exon/intron junctions, and compared with the sequence from the rat gene. A mutation resulting in a stop codon TGA was found in the fifth exon of the human urate oxidase gene. Sequence analysis of the polymerase chain reaction amplified DNA, corresponding to the fifth exon of urate oxidase from DNA samples from four different individuals, confirmed the same TGA stop codon in all. This single stop codon mutation and/or other mutation(s) in this gene may be responsible for the lack of urate oxidase activity in the human.  相似文献   

13.
3-Amino 1,2,4-triazole inhibits catalase irreversibly in the presence of hydrogen peroxide produced by urate oxidase and d-amino acid oxidase. Linearity can be obtained between the inhibition of catalase and the activity of the oxidases. A few microunits urate oxidase and d-amino acid oxidase, corresponding to less than 1 μg frozen-dried rat liver and kidney, respectively, can be determined by the simple assay of the remaining catalatic activity.  相似文献   

14.

Background

Rasburicase (Fasturtec® or Elitek®, Sanofi-Aventis), the recombinant form of urate oxidase from Aspergillus flavus, is a therapeutic enzyme used to prevent or decrease the high levels of uric acid in blood that can occur as a result of chemotherapy. It is produced by Sanofi-Aventis and currently purified via several standard steps of chromatography. This work explores the feasibility of replacing one or more chromatography steps in the downstream process by a crystallization step. It compares the efficacy of two crystallization techniques that have proven successful on pure urate oxidase, testing them on impure urate oxidase solutions.

Methodology/Principal Findings

Here we investigate the possibility of purifying urate oxidase directly by crystallization from the fermentation broth. Based on attractive interaction potentials which are known to drive urate oxidase crystallization, two crystallization routes are compared: a) by increased polymer concentration, which induces a depletion attraction and b) by decreased salt concentration, which induces attractive interactions via a salting-in effect. We observe that adding polymer, a very efficient way to crystallize pure urate oxidase through the depletion effect, is not an efficient way to grow crystals from impure solution. On the other hand, we show that dialysis, which decreases salt concentration through its strong salting-in effect, makes purification of urate oxidase from the fermentation broth possible.

Conclusions

The aim of this study is to compare purification efficacy of two crystallization methods. Our findings show that crystallization of urate oxidase from the fermentation broth provides purity comparable to what can be achieved with one chromatography step. This suggests that, in the case of urate oxidase, crystallization could be implemented not only for polishing or concentration during the last steps of purification, but also as an initial capture step, with minimal changes to the current process.  相似文献   

15.
Y. -N. Hong  P. Schopfer 《Planta》1981,152(4):325-335
The peroxisomal enzyme, urate oxidase (EC 1.7.3.3), and the next enzyme of the urate pathway, allantoinase (EC 3.5.2.5), demonstrate a lightmediated rise of activity in the cotyledons of mustard (Sinapis alba L.). The capacity of the peroxisomes for urate breakdown, marked by the time course of urate oxidase, develops distinctly later than the two other peroxisome functions (fatty acid breakdown, glyoxysomal function; glycolate breakdown, leaf peroxisomal function). The light effect on urate oxidase and allantoinase is mediated through the phytochrome system in all three seedling organs (cotyledons, hypocotyl, radicle), as revealed by induction/reversion experiments with red/far-red light pulses and continuous irradiation with far-red light (high irradiance reaction of phytochrome). Both enzyme activities can be induced by phytochrome in the seedling cotyledons only during a sensitive period of about 48 h prior to the actual light-mediated rise of activity, making it necessary to assume the existence of a long-lived intermediate (transmitter) in the signal response chain connecting enzyme formation to the phytochrome system. Detailed kinetic investigation, designed to test whether urate oxidase and allantoinase are controlled by phytochrome via the same signal response chain (coordinate induction), revealed large differences between the two enzymes: (i) a different onset of the loss of reversibility of a red light induction by a far-red light pulse (=onset of transmitter formation=coupling point; 48 h/24 h after sowing for urate oxidase/allantoinase); (ii) a different onset of the response (=onset of competence for transmitter= starting point; 72 h/48 h); (iii) full loss of reversibility (=completion of transmitter formation) is reached at different times (independence point, 90 h/52 h). These differences show that phytochrome controls urate oxidase and allantoinase via separate signal response chains. While urate oxidase can be localized in the peroxisomal fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the peroxisomal fraction did not appear to be an integral part of the peroxisome but originated presumably from adhering membrane fragments.Abbreviations AL allantoinase, EC 3.5.2.5 - CAT catalase, EC 1.11.1.6 - GO glycolate oxidase, EC 1.1.3.1 - ICL isocitrate lyase, EC 4.1.3.1 - UO urate oxidase, EC 1.7.3.3. Pr - Pfr red and far-red absorbing forms of phytochrome On the occasion of his 80th birthday we dedicate this paper to Prof. Dr. phil., Dr. mult. h.c. Kurt Mothes, pioneer in research on metabolism of urates  相似文献   

16.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5--9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation. After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37 degrees C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process. From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

17.
Mammals that degrade uric acid are not affected by gout or urate kidney stones. It is not fully understood how they convert uric acid into the much more soluble allantoin. Until recently, it had long been thought that urate oxidase was the only enzyme responsible for this conversion. However, detailed studies of the mechanism and regiochemistry of urate oxidation have called this assumption into question, suggesting the existence of other distinct enzymatic activities. Through phylogenetic genome comparison, we identify here two genes that share with urate oxidase a common history of loss or gain events. We show that the two proteins encoded by mouse genes catalyze two consecutive steps following urate oxidation to 5-hydroxyisourate (HIU): hydrolysis of HIU to give 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and decarboxylation of OHCU to give S-(+)-allantoin. Urate oxidation produces racemic allantoin on a time scale of hours, whereas the full enzymatic complement produces dextrorotatory allantoin on a time scale of seconds. The use of these enzymes in association with urate oxidase could improve the therapy of hyperuricemia.  相似文献   

18.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5–9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation.After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37°C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process.From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

19.
Regular fruit consumption lowers the risk of cardiovascular diseases and certain cancers, which has been attributed in part to fruit-derived antioxidant flavonoids. However, flavonoids are poorly absorbed by humans, and the increase in plasma antioxidant capacity observed after consumption of flavonoid-rich foods often greatly exceeds the increase in plasma flavonoids. In the present study, six healthy subjects consumed five Red Delicious apples (1037 +/- 38 g), plain bagels (263.1 +/- 0.9 g) and water matching the carbohydrate content and mass of the apples, and fructose (63.9 +/- 2.9 g) in water matching the fructose content and mass of the apples. The antioxidant capacity of plasma was measured before and up to 6 h after food consumption as ferric reducing antioxidant potential (FRAP), without or with ascorbate oxidase treatment (FRAPAO) to estimate the contribution of ascorbate. Baseline plasma FRAP and FRAPAO were 445 +/- 35 and 363 +/- 35 microM trolox equivalents, respectively. Apple consumption caused an acute, transient increase in both plasma FRAP and FRAPAO, with increases after 1 h of 54.6 +/- 8.7 and 61.3 = 17.2 microM trolox equivalents, respectively. This increase in plasma antioxidant capacity was paralleled by a large increase in plasma urate, a metabolic antioxidant, from 271 +/- 39 microM at baseline to 367 +/- 43 microM after 1 h. In contrast, FRAP and FRAPAO time-dependently decreased after bagel consumption, together with urate. Consumption of fructose mimicked the effects of apples with respect to increased FRAP, FRAPAO, and urate, but not ascorbate. Taken together, our data show that the increase in plasma antioxidant capacity in humans after apple consumption is due mainly to the well-known metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids.  相似文献   

20.
The end product of purine metabolism varies from species to species. The degradation of purines to urate is common to all animal species, but the degradation of urate is much less complete in higher animals. The comparison of subcellular distribution, intraperoxisomal localization forms, molecular structures, and some other properties of urate-degrading enzymes (urate oxidase, allantoinase, and allantoicase) among animals is described. Liver urate oxidase (uricase) is located in the peroxisomes in all animals with urate oxidase. On the basis of the comparison of intraperoxisomal localization forms, mol wt, and solubility of liver urate oxidase among animals, it is suggested that amphibian urate oxidase is a transition form in the evolution of aquatic animals to land animals. Allantoinase and allantoicase are different proteins in fish liver, but the two enzymes form a complex in amphibian liver. The subcellular localization of allantoinase and allantoicase varies among fishes. Hepatic allantoinase is located both in the peroxisomes and in the cytosol in saltwater fishes, and only in the cytosol in freshwater fishes. Hepatic allantoicase is located on the outer surface of the, peroxisomal membrane in the mackerel group and in the peroxisomal matrix in the sardine group. Amphibian hepatic allantoinase-allantoicase complex is probably located in the mitochondria. On the basis of previous data, changes of allantoinase and allantoicase in molecular structure and intracellular localization during animal evolution may be as follows: Fish liver allantoinase is a single peptide with a mol wt of 54,000, and is located both in the peroxisomes and in the cytosol, or only in the cytosol. Fish liver allantoicase consists of two identical subunits with a mol wt of 48,000, and is located in the peroxisomal matrix or on the outer surface of the peroxisomal membrane. The evolution of fishes to amphibia resulted in the dissociation of allantoicase into subunits, and in the association of allantoinase with the subunit of allantoicase. This amphibian enzyme was lost by further evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号