首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We presented a novel surface plasmon resonance (SPR) imaging method for analysis of protein arrays based on a wavelength interrogation-based SPR biosensor. The spectral imaging was performed by the combination of position control and resonance wavelengths calculated from SPR reflectivity spectra. The imaging method was evaluated by analyzing interactions of glutathione S-transferase-fusion proteins with their antibodies. Antigen-antibody interactions were successfully analyzed on glutathione S-transferase-fusion protein arrays by using the spectral imaging method, and the results were confirmed by a parallel analysis using a previously used spectral SPR biosensor based on wavelength interrogation. Specific binding of anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein arrays was qualitatively and quantitatively analyzed by the spectral SPR imaging. Thus, it was suggested that the novel spectral SPR imaging was a useful tool for the high-throughput analysis of protein-protein interactions on protein arrays.  相似文献   

2.
This paper reports the application of differential phase surface plasmon resonance (SPR) imaging in two-dimensional (2D) protein biosensor arrays. Our phase imaging approach offers a distinct advantage over the conventional angular SPR technique in terms of utilization efficiency of optical sensor elements in the imaging device. In the angular approach, each biosensor site in the biosensor array requires a linear array of optical detector elements to locate the SPR angular dip. The maximum biosensor density that a two-dimensional imaging device can offer is a one-dimensional SPR biosensor array. On the other hand, the phase-sensitive SPR approach captures data in the time domain instead of the spatial domain. It is possible that each pixel in the captured interferogram represents one sensor site, thus offering high-density two-dimensional biosensor arrays. In addition, our differential phase approach improves detection resolution through removing common-mode disturbances. Experimental results demonstrate a system resolution of 8.8 x 10(-7)RIU (refractive index unit). Real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding interactions at various concentration levels was achieved using a biosensor array. The detection limit was 0.77 microg/ml. The reported two-dimensional SPR biosensor array offers a real-time and non-labeling detection tool for high-throughput protein array analysis. It may find promising applications in protein therapeutics, drug screening and clinical diagnostics.  相似文献   

3.
Jung JW  Jung SH  Kim HS  Yuk JS  Park JB  Kim YM  Han JA  Kim PH  Ha KS 《Proteomics》2006,6(4):1110-1120
We modified gold arrays with a glutathione (GSH) surface, and investigated high-throughput protein interactions with a spectral surface plasmon resonance (SPR) biosensor. We fabricated the GSH exterior on gold surfaces by successive modification with aminoethanethiol, 4-maleimidobutyric acid N-hydroxysuccinimide ester and GSH. We immobilized GST-Rac1, GST-RhoA, the GST-Rho-binding domain of rhotekin and the GST-p21-binding domain of PAK1 onto the GSH surface, and observed specific antigen-antibody interactions on the GST-fusion protein arrays. We determined the expression of GST-fusion proteins in Escherichia coli on the GSH surface with the SPR biosensor. We then analyzed the interactions of tissue transglutaminase (tTGase), a Ca2+-dependent enzyme, with RhoA and Rac1 on the GST-fusion protein arrays with the SPR biosensor. We found that tTGase interacted with RhoA and Rac1 in a Ca2+-dependent manner, indicating that the interactions were dependent on tTGase activity. In addition, transamidation of Rac1 by tTGase was dependent on Ca2+ concentration. We obtained similar results with GST pull-down assays. Thus, protein arrays prepared on the GSH surface provide a useful system for the high-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions with the spectral SPR biosensors.  相似文献   

4.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

5.
We present a new integrated-optic surface plasmon resonance (SPR) biosensor based on electro-optical modulation. The SPR characteristics for the analyte concentration detection can be electro-optically modulated by applying the voltage on the electrodes of the biosensor fabricated on lithium niobate, which is an excellent electro-optic material. Two measurement methods, electro-optically modulated SPR spectral measurement and electro-optically modulated SPR intensity measurement, are demonstrated and their measurands are the SPR wavelength and the output optical intensity, respectively. Human serum albumin is coated on the gold film surface of the proposed biosensor to detect the concentration of beta-blocker, which is a remedy for heart disease. As the applied voltage increases such that the effective index of guided mode rises, the SPR wavelength shifts toward the long wavelength side and the output optical intensity at the wavelength of 632.8 nm diminishes. The linear regression slope of the relation between the measurand and the applied voltage is dependent on the analyte concentration and can be used to determine the concentration variation. Experimental results measured by the electro-optically modulated SPR methods are compared with those measured by the conventional spectral and intensity methods, and the effects of waveguide width on the biosensor performance are discussed.  相似文献   

6.
Duverger E  Frison N  Roche AC  Monsigny M 《Biochimie》2003,85(1-2):167-179
The specificity, the strength, the kinetics and some thermodynamic parameters of sugar-protein interactions are easily assessed by surface plasmon resonance (SPR). This paper intends to present both theoretical and practical considerations. This includes: the principle of SPR, the analysis according to Langmuir and Scatchard, the problems linked either to mass transport limitation, to the heterogeneity of the immobilized ligand density or to the non-linearity due to cluster effects. The non-linearity may be taken into account by either one of two ways: the fractal or the Sips approaches that have been developed with the aim of linearizing the data. In addition, selected data obtained by using either immobilized carbohydrates or immobilized lectins are summarized. The SPR has also been found useful to collect information concerning oligosaccharide structure as well as lectin-sugar specificity and to develop new tools with medical applications. Finally, a series of practical considerations are gathered in the hope of avoiding some of the common pitfalls arising in sugar-lectin interaction studies based on the use of SPR.  相似文献   

7.
Advances in surface plasmon resonance biosensor analysis   总被引:31,自引:0,他引:31  
The number and diversity of surface plasmon resonance (SPR) biosensor applications continue to increase. Evolutions in instrument and sensor chip technology, experimental methodology, and data analysis are making it possible to examine a wider variety of biomolecular interactions in greater mechanistic detail. SPR biosensors are poised to make a significant impact in basic research and pharmaceutical discovery.  相似文献   

8.
A novel transmission-based localized surface plasmon resonance (LSPR) fiber-optic probe has been developed to determine the heavy metal cadmium ion (Cd(II)) concentration. The LSPR sensor was constructed by immobilizing phytochelatins (PCs), (gammaGlc-Cys)(8)-Gly, onto gold nanoparticle-modified optical fiber (NM(Au)OF). The optimal immobilizing conditions of PCs on to the NM(Au)OF are 71.6mug/ml PCs in pH 7.4 PBS for 2h. The absorbability (change of light absorption) of the PC-functionalized NM(Au)OF sensor increases to 9% upon changing the Cd(II) level from 1 to 8ppb with a sensitivity of 1.24ppb(-1) and a detection limit of 0.16ppb. The sensor retained 85% of its original activity after nine cycles of deactivation and reactivations. In addition, the sensor retains its activity and gives reproducible results after storage in 5% d-(+)-trehalose dehydrate solution at 4 degrees C for 35 days. The dissociation constant (K(d)) of the immobilized PCs with Cd(II) was about 6.77x10(-8)M. In conclusion, the PCs-functionalized NM(Au)OF sensor can be used to determine the concentration of Cd(II) with high sensitivity.  相似文献   

9.
Liquid and gas chromatography are commonly used to measure organophosphorus pesticides. However, these methods are relatively time consuming and require a tedious sample pretreatment. Here, we applied the localized surface plasmon resonance (LSPR) of gold nanoparticles covalently coupled with acetylcholinesterase (AChE) to create a biosensor for detecting an example of serial signals responding to paraoxon in the range of 1-100 ppb by an AChE modified LSPR sensor immersing in a 0.05 mM ACh solution. The underlying mechanism is that paraoxon prevents acetylcholine chloride (ACh) reacting with AChE by destroying the OH bond of serine in AChE. We found that the AChE modified LSPR sensors prepared by incubation with 12.5 mU/mL of AChE in phosphate buffer solution at pH 8.5 room temperature for 14 h have the best linear inhibition response with a 0.234 ppb limit of paraoxon detection. A 14% of inhibition on the sensor corresponds to the change of paraoxon concentration from 1 to 100 ppb. The sensor remained 94% of its original activity after six cycles of inhibition with 500 ppb paraoxon followed with reactivation of AChE by 0.5 mM 2-pyriding-aldoxime methoiodide (2-PAM). In addition, the sensor retains activity and gives reproducible results after storage in dry state at 4 degrees C for 60 days. In conclusion, we demonstrated that the AChE modified LSPR sensors can be used to determine the concentration of paraoxon biosensor with high sensitive and stable characteristics.  相似文献   

10.
Surface plasmon resonance with an alkane L1 chip was used to investigate the binding of uropathogenic Escherichia coli, carrying adhesion receptors, to globotetraosylceramide (globoside; GbO4). The immobilization of globoside was reproducible and resulted in a stable globoside layer on the L1 chip. The data indicated that the globoside-immobilized L1 chip could be used for studying interactions with live or chemically fixed E. coli. The results indicated that the dissociation time was significantly reduced in glutaraldehyde-fixed E. coli as compared to living cells. Overall, the report demonstrates the significance of the L1 chip in terms of sensitivity, specificity, handling, and speed when studying globoside/E. coli interactions. This model may assist in screening for compounds that can inhibit the binding of uropathogenic E. coli to glycolipid ligands on target cells.  相似文献   

11.
Surface plasmon resonance (SPR) was used to monitor the interaction of alphaGal-antibodies from human blood group O serum with linear blood group B-saccharides, employing Galalpha1-3Galbeta1-4GlcNAc-HSA immobilised on a sensor chip surface. Strong binding of antibodies, as evident from high relative response values exceeding 200 RU, was observed. The interaction was influenced by the nature of the oligosaccharide that was added to the antibody sample prior to measurement. For example, the addition of either of the linear B-saccharides Galalpha1-3Gal and Galalpha1-3Galbeta1-4GlcNAc produced complete inhibition of antibody binding to the sensor surface, whereas the addition of the related but non-specific blood group A saccharide, GalNAcalpha1-3(Fucalpha1-2)Gal, had little effect on binding. The technique was used for the rapid monitoring of the removal of alphaGal-antibodies from human serum by affinity columns, which contained either Galalpha1-3Gal or Galalpha1-3Galbeta1-4GlcNAc as ligand. The above carbohydrates are currently evaluated as inhibitors or as affinity ligands, in the prevention of hyperacute rejection during xenotransplantation.  相似文献   

12.
We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti-HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated byN-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately 17.6 ng/mm2. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. 40 μg/mL. This linearity was much higher than that of the ELISA method. It appeared the antigen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi-sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.  相似文献   

13.
A surface plasmon resonance array biosensor based on spectroscopic imaging   总被引:6,自引:0,他引:6  
We have developed a multi-element transduction system which combines conventional SPR spectroscopy with one-dimensional SPR microscopy to create an effective platform for monitoring binding events on macro- or micro-patterned receptor arrays created on disposable sensor chips. This creates an effective platform for monitoring simultaneous binding events on each of the regions patterned with the receptors. This system has been specifically designed with commercially available components to allow relatively easy duplication. Furthermore, this system can use a proven, simple method to compensate for changes in the bulk index of refraction of the solution containing the analytes due to changes in temperature or solute concentration with simple modifications to the sensor chips alone. Preliminary results demonstrate how this system can be used to monitor several independent biospecific binding events simultaneously.  相似文献   

14.
Survey of the 1999 surface plasmon resonance biosensor literature   总被引:7,自引:0,他引:7  
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.  相似文献   

15.
16.
We have investigated the use of multilayer films of polyelectrolytes as selective surfaces to analyze protein interactions with a self-assembled SPR wavelength-shift sensor. Charged arrays were prepared by alternating adsorption of the charged polyelectrolytes, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS). Multilayer formation was monitored with the SPR wavelength-shift sensor and a Spreeta SPR sensor. Protein immobilization on the charged surfaces, which was also analyzed by the SPR sensors, was dependent on the pI of the proteins. Tissue transglutaminase (tTGase) and beta-galactosidase (pIs, 5.1 and 5.3, respectively) were preferentially bound to the positively charged PDDA surface, whereas lysozyme (pI, 11.0) was selectively bound to the negatively charged PSS surface. Immobilization of tTGase on the PDDA surface was also dependent on the buffer pH. The interaction of tTGase with RhoA(V14), a constitutively active form of Rho, could be detected on the charged arrays with the wavelength-shift sensor. The arrays could be reutilized at least 5 times. Thus, it is likely that charged surfaces, assembled by the layer-by-layer method using polyelectrolytes, will prove useful for preparing selective protein arrays.  相似文献   

17.
Dynamic interactions between hammerhead ribozymes and RNA substrates were measured using the surface plasmon resonance (SPR) technology. Two in vitro transcribed substrates (non-cleavable and cleavable) were immobilised on streptavidin-coated dextran matrices and subsequently challenged with non-related yeast tRNA or two hammerhead ribozymes, both of which had previously been shown to exhibit functional binding and cleavage of complementary target RNAs. The target-binding domain of one of the ribozymes was fully complementary to a 16-ribonucleotide stretch on the immobilised substrates, while the other ribozyme had a nine-ribonucleotide complementarity. The two ribozymes could readily be differentiated with regard to affinity. Cleavage could be measured, using the ribozyme with full target complementarity to the cleavable substrate. In contrast, the ribozyme with lower affinity lacked cleavage activity. We suggest that SPR will be useful for investigations of ribozyme-substrate interactions.  相似文献   

18.
We have developed a simple assay method for the evaluation of estrogen receptor (ER) binding capacity of chemicals without the use of radio- or fluorescence-labeled compounds. We used the solution competition assay by the BIACORE biosensor, a surface plasmon resonance biosensor, with estradiol as a ligand, human recombinant ER(alpha) (hrER(alpha)) as a high molecular weight (hmw) interactant and test chemicals as analytes. For the ligand, aminated estradiol with a spacer molecule (E2-17PeNH) was synthesized and immobilized on a carboxymethyl dextran-coated sensor chip by the amine coupling method. The injection of the hmw interactant hrER(alpha) to the biosensor raised the sensorgram, indicating its binding to the ligand E2-17PeNH. The binding of test chemicals to hrERalpha was determined as a reduction in the hrER(alpha) binding to E2-17PeNH. The dissociation constant for the binding to hrER(alpha) was calculated for estrone (4.29 x 10(-9)M), estradiol (4.04 x 10(-10)M), estriol (8.35 x 10(-10)M), tamoxifen (2.16 x 10(-8)M), diethylstilbestrol (1.46 x 10(-10)M), bisphenol A (1.35 x 10(-6)M) and 4-nonylphenol (7.49 x 10(-6)M), by plotting the data according to an equation based on mass action law. This method can also be used as a high throughput screening method.  相似文献   

19.
Ni(II) and Zn(II) M-DNA formation and denaturation of double-stranded DNA (dsDNA) by Cd(2+) were monitored by surface plasmon resonance (SPR). When exposed to immobilized 30 bp 50% GC dsDNA, Zn(2+) and Ni(2+) were found to give signals indicative of a conformational change at pH 8.5 but not 7.5, while Mg(2+) and Ca(2+) caused small changes at both pHs. The concentrations that gave 50% of the maximum responses were 0.06 and 0.50 mM for Zn(2+) and Ni(2+), respectively. At pH 8.5, Cd(2+) denatured over 40% of the dsDNA, while other metals denatured less than 5% of the DNA. Smaller pH-dependent signals were induced by Zn(2+), Ni(2+) or Cd(2+) with 50% GC single-stranded DNA (ssDNA), and with a homopolymer of d(T)30. Homopolymers d(A)30 and d(C)30 showed small signals that were largely independent of pH in the presence of Zn(2+) or Ni(2+).  相似文献   

20.
We have optimized surface plasmon resonance (SPR) biosensor technology for a rapid, direct, and low-consumption label-free multianalyte screening of synthetic oligonucleotides (ONs) with modified internucleotide linkages potentially applicable in antisense therapy. Monitoring of the ONs hybridization is based on the formation of complex between the natural oligonucleotide probe immobilized on the sensor surface and the ON in solution in contact with the sensor surface. An immobilization chemistry utilizing the streptavidin-biotin interaction was employed to obtain desired ligand density and high hybridization efficiency. It was demonstrated that the sensor is capable of detecting complementary 23-mer ONs in concentrations as low as 0.1 nM with high specificity and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号