首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Adenosine triphosphate hydrolysis by purified rubisco activase   总被引:15,自引:0,他引:15  
Activation of ribulose bisphosphate carboxylase/oxygenase (rubisco) in vivo is mediated by a specific protein, rubisco activase. In vitro, activation of rubisco by rubisco activase is dependent on ATP and is inhibited by ADP. Purified rubisco activase hydrolyzed ATP with a specific activity of 1.5 mumol min-1 mg-1 protein, releasing approximately stoichiometric amounts of ADP and Pi. Hydrolysis was highly specific for ATP-Mg and had a broad pH optimum, with maximum activity at pH 8.0-8.5. ATPase activity was inhibited by ADP but not by molybdate, vanadate, azide, nitrate, or fluoride. Addition of rubisco in either the inactive or activated form had no significant effect on ATPase activity. Incubation of rubisco activase in the absence of ATP resulted in loss of both ATPase and rubisco activation activities. Both activities were also heat labile, with 50% loss in activity after 5 min at 38 degrees C and complete inhibition following treatment at 43 degrees C. Both activities showed a sigmoidal response to ATP concentration, with half-maximal activity at 0.053 mM ATP. Rubisco activation activity was dependent on the concentrations of both ATP and ADP. The results suggest that ATPase activity is an intrinsic property of rubisco activase.  相似文献   

2.
The activation of purified ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) has been studied in the presence of sugar phosphates, and the effect of rubisco activase on this process determined. During an 11-minute time course at pH 7.7 and 11 micromolar CO2, the activation of rubisco was strongly inhibited by ribulose-1,5-bisphosphate (4 millimolar), fructose-1,6-bisphosphate (1 millimolar) and ribose 5-phosphate (5 millimolar), but this inhibition was overcome by the addition of rubisco activase and activation then proceeded to a greater extent than spontaneous activation of rubisco. Glycerate 3-phosphate (20 millomolar) slowed the initial rate but not the extent of activation and rubisco activase had no effect on this. The activation of rubisco was shown to be affected by phosphoenolpyruvate (3 millimolar) but not by creatine phosphate (3 millimolar) or ATP (3 millimolar), and the creatine-phosphate/creatine phosphokinase system was used to generate the high ATP/ADP quotients required for rubisco activase to function. ATP was shown to be required for the rubisco activase-dependent rubisco activation in the presence of fructose-1,6-bisphosphate (1 millimolar). It is concluded that rubisco activase has a mixed specificity for some sugar phosphate-bound forms of rubisco, but has low or no activity with others. Some possible bases for these differences among sugar phosphates are discussed but remain to be established.  相似文献   

3.
Purification and assay of rubisco activase from leaves   总被引:18,自引:10,他引:8       下载免费PDF全文
Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase protein was purified from spinach leaves by ammonium sulfate precipitation and ion exchange fast protein liquid chromatography. This resulted in 48-fold purification with 70% recovery of activity and yielded up to 18 milligrams of rubisco activase protein from 100 grams of leaves. Based on these figures, the protein comprised approximately 2% by weight of soluble protein in spinach (Spinacia oleracea L.) leaves. The preparations were at least 95% pure and were stable when frozen in liquid nitrogen. Addition of ATP during purification and storage was necessary to maintain activity. Assay of rubisco activase was based on its ability to promote activation of rubisco in the presence of ribulose-1,5-bisphosphate. There was an absolute requirement for ATP which could not be replaced by other nucleoside phosphates. The initial rate of increase of rubisco activity and the final rubisco specific activity achieved were both dependent on the concentration of rubisco activase. The initial rate was directly proportional to the rubisco activase concentration and was used as the basis of activity. The rate of activation of rubisco was also dependent on the rubisco concentration, suggesting that the activation process is a second order reaction dependent on the concentrations of both rubisco and rubisco activase. It is suggested that deactivation of rubisco occurs simultaneously with rubisco activase-mediated activation, and that rubisco activation state represents a dynamic equilibrium between these two processes.  相似文献   

4.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO2 (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport chain this light-dependent reaction occurred. In the presence of DCMU and methyl viologen, the artificial donors durohydroquinone and 2,6-dichlorophenolindophenol (DCPIP) plus ascorbate both supported light activation of rubisco at saturating ATP concentrations. No light activation occurred when DCPIP was used as an acceptor with water as electron donor in the presence of ATP and dibromothymoquinone, even though photosynthetic electron transport was observed. Nigericin completely inhibited the light-dependent activation of rubisco. Based on these results, we conclude that stimulation of light activation of rubisco by rubisco activase requires electron transport through PSI but not PSII, and that this light requirement is not to supply the ATP needed by the rubisco activase reaction. Furthermore, a pH gradient across the thylakoid membrane appears necessary for maximum light activation of rubisco even when ATP is provided exogenously.  相似文献   

5.
To localize and characterize the regulatory nucleotide site of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, we have investigated the effects of ADP, ATP, and analogues of these nucleotides on the rate of dephosphorylation of both native ATPase and ATPase modified with fluorescein 5'-isothiocyanate (FITC), a reagent which hinders access of nucleotides to the ATPase catalytic site without affecting phosphorylation from Pi. Dephosphorylation of the phosphoenzyme formed from Pi was monitored by rapid filtration or stopped-flow fluorescence, mostly at 20 degrees C, pH 6.0, and in the absence of potassium. Fluorescence measurements were made possible through the use of 8-bromo-ATP, which selectively quenched certain tryptophan residues of the ATPase, thereby allowing the intrinsic fluorescence changes associated with dephosphorylation to be measured in the presence of bound nucleotide. ATP, 8-bromo-ATP, and trinitrophenyladenosine diand triphosphate, but not ADP, enhanced the rate of dephosphorylation of native ATPase 2-3-fold when added in the absence of divalent cations. Millimolar concentrations of Mg2+ eliminated the accelerating effects. Acceleration in the absence of Mg2+ was observed at relatively low concentrations of ATP and 8-bromo-ATP (0.01-0.1 mM) and binding of metal-free ATP and ADP, but not Mg.ATP, to the phosphoenzyme in this concentration range was demonstrated directly. Modification of the ATPase with FITC blocked nucleotide binding in the submillimolar concentration range and eliminated the nucleotide-induced acceleration of dephosphorylation. These results show that dephosphorylation, under these conditions, is regulated by ATP but not by Mg.ATP or ADP, and that the catalytic site is the locus of this "regulatory" ATP binding site.  相似文献   

6.
The ATPase activity and fluoresence of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activase were determined over a range of MgCl2, KCl, and activase concentrations. Both salts promoted ADP release from ATP and intrinsic fluorescence enhancement by adenosine 5[prime]-[[gamma]-thio] triphosphate, but Mg2+ was about 10 times more effective than K+. ATPase and fluorescence enhancement both increased from zero to saturation within the same Mg2+ and K+ concentration ranges. At saturating concentrations (5 mM Mg2+ and 22 mM K+), the specific activity of ATPase (turnover time, about 1 s) and specific intrinsic fluorescence enhancement were maximal and unaffected by activase concentration above 1 [mu]M activase; below 1 [mu]M activase, both decreased sharply. These responses are remarkably similar to the behavior of actin. Intrinsic fluorescence enhancement of Rubisco activase reflects the extent of polymerization, showing that the smaller oligomer or monomer present in low-salt and activase concentrations is inactive in ATP hydrolysis. However, quenching of 1-anilinonapthaline-8-sulfonate fluorescence revealed that ADP and adenosine 5[prime]-[[gamma]-thio] triphosphate bind equally well to activase at low- and high-salt concentrations. This is consistent with an actin-like mechanism requiring a dynamic equilibrium between monomer and oligomers for ATP hydrolysis. The specific activation rate of substrate-bound decarbamylated Rubisco decreased at activase concentrations below 1 [mu]M. This suggests that a large oligomeric form of activase, rather than a monomer, interacts with Rubisco when performing the release of bound ribulose-1,5-bisphosphate from the inactive enzyme.  相似文献   

7.
Since activation of ribulose bisphosphate carboxylase (rubisco) by rubisco activase is sensitive to ATP and ADP in vitro, we aimed to test the correlation between ATP level and rubisco activation state in intact leaves of Spinacia oleracea L. in response to changes in irradiance and after feeding the electron acceptor methyl viologen. Leaves were exposed to various irradiances for 45 minutes at atmospheric partial pressures of CO2 and O2. After measuring the rate of CO2 assimilation, leaves were freeze-clamped in situ and the punched discs assayed for rubisco activity, and amounts of ribulose bisphosphate (RuBP), ATP, and ADP. The photosynthetic rate and the activation state of rubisco increased with increasing irradiance but the levels of RuBP, ATP, and ADP were not greatly affected. Methyl viologen fed leaves under low irradiance had rubisco activation states of 93% compared to 51% in control leaves. The ATP content of the leaves was also significantly higher and the ratio of ATP to ADP was 4.1 in methyl viologen fed leaves compared to 2.2 in control leaves. From these results and other published results we conclude that a correlation between ATP level and rubisco activation can be observed in intact leaves, but that during changes in irradiance some additional factors are involved in regulating rubisco activation.  相似文献   

8.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

9.
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1 (ECF1) has been found to be ligand-dependent, as measured indirectly by the activation of the enzyme that occurs on protease digestion, or when followed directly by monitoring the cleavage of this subunit using monoclonal antibodies. The cleavage of the epsilon subunit was fast in the presence of ADP alone, ADP + MG2+, ATP + EDTA, or AMP-PNP, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site(s). The half-maximal concentration of Pi required in the presence of ADP + Mg2+ to protect the epsilon subunit from cleavage by trypsin was 50 microM, which is in the range measured for the high-affinity binding of Pi to F1. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Mg2+ + Pi, the epsilon subunit cross-linked to beta in high yield. With ATP + EDTA or ADP + Mg2+ (no Pi), the yield of the beta-epsilon cross-linked product was much reduced. We conclude that the epsilon subunit undergoes a conformational change dependent on the presence of Pi. It has been found previously that binding of the epsilon subunit to ECF1 inhibits ATPase activity by decreasing the off rate of Pi [Dunn, S. D., Zadorozny, V. D., Tozer, R. G., & Orr, L. E. (1987) Biochemistry 26, 4488-4493]. This reciprocal relationship between Pi binding and epsilon-subunit conformation has important implications for energy transduction by the E. coli ATP synthase.  相似文献   

10.
Light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and stromal ATP content were measured in intact isolated spinach chloroplasts. Treatments which decreased stromal ATP, such as incubation with the ATP analog β,γ-methylene adenosine triphosphate or with the energy transfer inhibitor phloridzin inhibited the light activation of rubisco. In the absence of added inorganic phosphate (Pi), light activation of rubisco was inhibited, coincident with low stromal ATP. Addition of methyl viologen restored both stromal ATP and rubisco activity to levels observed in the presence of Pi. Activation of rubisco was inhibited in the presence of 2 millimolar dihydroxyacetone phosphate or 3-phosphoglycerate and stromal ATP was also decreased under these conditions. Both were partially restored by increasing the Pi concentration. The strong correlation between activation state of rubisco and stromal ATP concentration in intact chloroplasts under a wide variety of experimental conditions indicates that light activation of rubisco is dependent on ATP and proportional to the ATP concentration. These observations can be explained in terms of the rubisco activase protein, which mediates activation of rubisco at physiological concentrations of CO2 and ribulose-1,5-bisphosphate and is dependent upon ATP.  相似文献   

11.
We used 7Li NMR spin-lattice relaxation times and 31P NMR chemical shifts to study the binding of Li+ and Mg2+ to the phosphate moieties of ATP and ADP. To examine the binding of Li+ and Mg2+ to the base and ribose moieties, we used 1H and 13C NMR chemical shifts. The 7Li NMR relaxation times of Li+/Mg2+ mixtures of ATP or ADP increased with increasing concentrations of Mg2+, suggesting competition between the two ions for adenine nucleotides. No significant binding of Li+ and Mg2+ to the base and ribose moieties occurred. At the pH and ionic strength used, 2:1 and 1:1 species of the Li(+)-ATP and Li+-ADP complexes were present, with the 2:1 species predominating. In contrast, 1:1 species predominated for the Mg(2+)-ADP and Mg(2+)-ATP complexes. We calculated the Li(+)-nucleotide binding constants in the presence and absence of Mg2+ and found them to be somewhat greater in the presence of Mg2+. Although competition between Li+ and Mg2+ for ATP and ADP phosphate binding sites in solution is consistent with the 31P chemical shift data, the possibility that the Li+ and Mg2+ form mixed complexes with the phosphate groups of ATP or ADP cannot be ruled out.  相似文献   

12.
Decrease in rubisco activation at high CO2 concentration was caused by decrease in carbamylation of rubisco (Rohet al., 1996). However, it is unclear whether decrease in carbamylation rate at high CO2 concentration is due to decrease in activity itself or content of rubisco activase. To clarify this ambiguity, investigation was performed to determine effects of CO2 concentration on rubisco activase with kidney bean (Phaseolus vulgaris L.) leaves grown at normal CO2 (350 ppm) and high CO2 (650 ppm) concentration. The analysis of Western blotting showed that the 50 and 14.5 kl) polypeptides were identified immunochemically as the large and small subunits of rubisco in the preparation, respectively. For the 14.5 kD small subunit, the degree of intensity at high CO2 concentration was similar to that at normal CO2 concentration. For the 50 kD large sububit, however, the intensity of a band at high CO, concentration was significantly higher than that at normal CO2 concentration, indicating that only the large subunit is affected by high CO2 concentration. The analysis of Western immunoblotting showed two major polypeptides at 46 and 42 kD which were identified as rubisco activase subunits. The intensities of two bands were shown to be higher at normal CO2 than high CO2 concentration. These data indicate that decrease of carbamylation resulting from increase of CO2 concentration was caused by rubisco activase. Finally, by employing ATP hydrolysis assay and ELISA, we also observed a significant decrease in both activity and content of rubisco activase as CO2 concentration was raised from normal to high CO2 concentration. These results suggest that decrease in rubisco carbamylation at high CO2 concentration is caused by activity itself and/or content of rubisco activase.  相似文献   

13.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

14.
Carbamoyl-phosphate synthetase was inactivated by elastase with first-order kinetics, and N-acetyl-L-glutamate speeded inactivation. From the dependence of the t1/2 value for inactivation on the concentration of acetylglutamate we estimate a Kd value for binding of the activator of 0.365 mM, which is approximately 600 times greater than in the presence of ATP, HCO3-, K+ and Mg2+. K+ and Mg2+ are not required for binding with low affinity, and in the absence of ATP they do not appear to increase the affinity for acetylglutamate. In the presence of acetylglutamate, mixtures of ATP, K+ and Mg2+ protect the enzyme from inactivation. ADP or AdoPP[NH]P partly replaced ATP in protecting the enzyme and thus binding of the nucleotide without further reaction is enough for protection. Two partial activities of the enzyme were inactivated by elastase to the same extent as the overall reaction, and thus elastase affects some property of the enzyme which is essential for catalysis. With other proteinases tested, inactivation was also accelerated by acetylglutamate and was slowed by mixtures of ATP, K+, Mg2+ and acetylglutamate, suggesting that changes in the accessibility of susceptible bonds are responsible for the changes in the degree of inactivation. It is concluded that elastase attacks at or close to the binding sites for ATP, and that exposure of the binding site for the ATP molecule that yields Pi (ATPA) upon binding of acetylglutamate causes the acceleration of the proteolytic inactivation.  相似文献   

15.
Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [3H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [3H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [3H]ADP in 30 min with a Kd of 30 microM. [3H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [3H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [3H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits. It has also been demonstrated that enzyme-bound ATP is formed when the TF0.F1 complex containing bound ADP was incubated with Pi, Mg2+, and 50% dimethyl sulfoxide.  相似文献   

16.
Mechanism for nucleotide exchange in monomeric actin   总被引:1,自引:0,他引:1  
C Frieden  K Patane 《Biochemistry》1988,27(10):3812-3820
Rabbit skeletal muscle G-actin has been treated to obtain ADP, 1,N6-ethenoadenosine diphosphate (epsilon-ADP), or 1,N6-ethenoadenosine triphosphate (epsilon-ATP) at the nucleotide binding site and either Mg2+ or Ca2+ at high- and moderate-affinity metal binding sites. Apparent rates or rate constants for the displacement of the actin-bound nucleotides by epsilon-ATP or ATP have been obtained by stopped-flow measurements at pH 8 and 20 degrees C of the fluorescence difference between bound and free epsilon-ATP or epsilon-ADP. In the presence of Ca2+, displacement of ADP by epsilon-ATP or epsilon-ADP by ATP is a biphasic process, but in the presence of low (less than 10 microM) Mg2+ concentrations, it is a slow first-order process. At high levels of Mg2+ (greater than 50 microM), low ADP concentrations displace epsilon-ATP from G-actin as a consequence of Mg2+ binding to moderate-affinity sites on the actin. Displacement of epsilon-ATP by ATP in the presence of either Ca2+ or Mg2+ is slow at low ATP concentrations, but the rate is increased by high ATP concentrations. Using ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, we find that nucleotide exchange is affected differently by the removal of Ca2+ from the high-affinity site compared to Ca2+ removal from moderate-affinity sites. A mechanism for the displacement reaction is proposed in which there are two forms of an actin-ADP complex and metal binding influences the ratio of these forms as well as the binding of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

18.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The time course of binding of N-ethylmaleimide (NEM) to the SR was measured at pH 7.5 in the presence or absence of ATP or ADP. The following results were obtained. 1. Both in the presence and absence of nucleotide, the ATPase [EC 3.6.1.3] activity decreased linearly with increase in the amount of NEM bound to the fragmented sarcoplasmic reticulum (SR), and was inhibited almost completely by the binding of 2 moles of NEM per 10(5) g of the SR protein. 2. The amount of NEM incorporated into the ATPase (M.W.=105,000) was measured by SDS disc-gel electrophoresis. It was shown that the ATPase activity was inhibited almost completely by the binding of 2 moles of NEM per mole of ATPase. 3. The rate of binding of NEM to SR decreased by 30-40% in the presence of either ATP or ADP. The concentrations of both ATP and ADP for half-saturation were 0.1-0.2mM. 4. The effect of nucleotide on the rate of binding of NEM was not changed by the presence of Ca2+ and Mg2+ ions. Similar effects were also observed even when the SR membranes were solubilized with Triton X-100. It is suggested from these results that one or two SH groups are located in the active site of the SR ATPase, and that conformational changes are induced by the addition of ATP and ADP.  相似文献   

20.
The kinetic properties of the [3H]ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase [EC 3.6.1,3] were investigated, using NaI-treated microsomes from bovine brain, and the following results were obtained. 1. The rates of the Na+-dependent exchange reaction in the steady state were measured in a solution containing 45 micronM free Mg2+, 100 mMNaCl, 80 micronM ATP, and 160 micronM ADP at pH 6.5 and 4-5 degrees. The rate and amount of decrease in phosphorylated intermediate on adding ADP, i.e., the amount of ADP-sensitive EP, were measured while varying one of the reaction parameters and fixing the others mentioned above. Plots of the exchange rate and the amount of ADP-sensitive EP against the logarithm of free Mg2+ concentration gave bell-shaped curves with maximum values at 50-60 micronM free Mg2+. Plots of the exchange rate and the amount of ADP-sensitive EP against pH also gave bell-shaped curves with maximum values at pH 6.9-7. They both increased with increase in the concentration of NaCl to maximum values at 150-200 mM NaCl, and then decreased rapidly with increase in the NaCl concentration above 200 mM. The dependences of the exchange rate and the amount of ADP-sensitive EP on the concentration of ADP followed the Michaelis-Menten equation, and the Michaelis constants Km, for both were 43 micronM. The dependence of the exchange rate on the ATP concentration also followed the Michaelis-Menten equation, and the Km value was 30 micronM. The amount of ADP-sensitive EP increased with increase in the ATP concentration, and reached a maximum value at about 5 micronM ATP. 2. The N+-dependent [3H]ADP-ATP exchange reaction was started by adding [3H]ADP to EP at low Mg2+-concentration. The reaction consisted of a rapid initial phase and a slow steady phase. The amount of [3H]ATP formed during the rapid initial phase, i.e. the size of the ATP burst, was equal to that of ADP-sensitive EP, and was proportional to the rate in the steady state. At high Mg2+ concentration, the rate of Na+-dependent exchange in the steady state was almost zero, and EP did not show any ADP sensitivity. However, rapid formation of [3H]ATP was observed in the pre-steady state, and the size of the ATP burst increased with increase in the KCl concentration. From these findings, we concluded that an enzyme-ATP complex (E2ATP) formed at low Mg2+ concentration is in equilibrium with EP + ADP, that the rate-limiting step for the exchange reaction is the release of ATP from the enzyme-ATP complex, that the ADP-insensitive EP (formula: see text) produced at high Mg2+ concentration is in equilibrium with the enzyme-ATP complex, and that the equilibrium shifts towards the enzyme-ATP complex on adding KCl. Actually, the ratio of the size of the ATP burst to the amount of EP was equal to the reciprocal of the equilibrium constant of step (formula: see text), determined by a method previously reported by us.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号