首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of two spring wheat (Triticum aestivum L.) cultivars, salt tolerant SARC-I and salt sensitive Potohar, to different concentrations of NaCl was examined under glasshouse conditions. Eighteen-day-old plants of both the lines grown in sand culture were irrigated with 0 (control), 80, 160 or 240 mM NaCl in full strength Hoagland's nutrient solution. Shoot fresh and dry masses, and leaf area per plant of SARC-I at the vegetative stage, were significantly greater than those of cv. Potohar at higher salt concentrations, however, relative growth rate (RGR) of cv. Potohar was significantly higher than that of SARC-I. SARC-I had higher net photosynthetic rate (PN), stomatal conductance (gs) and transpiration rate (E) than cv. Potohar at the vegetative stage, but the cultivars did not differ significantly in water-use efficiency (PN/E), intrinsic water use efficiency (PN/gs), and intercellular/ambient CO2 concentration ratio. At the grain development stage, SARC-I had significantly higher PN and gs in the flag leaf than cv. Potohar under salinity. SARC-I was superior to cv. Potohar with respect to number of grains per spike, number of grains per spikelet, mean grain mass, and grain yield per plant at all NaCl concentrations.  相似文献   

2.
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007–2008 and 2008–2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (P N) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of P N to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2–11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent.  相似文献   

3.
Pierre Bancal 《Annals of botany》2009,103(8):1315-1324

Background and Aims

Nitrogen (N) remobilization is the major source of N for grain filling in wheat, the other being N uptake after anthesis (Nup); however, variations in remobilization efficiency are not fully understood. It is hard to tell whether the source or the sink effects predominate, because N in the culm at anthesis (Nant) correlates strongly with both N remobilization (Nrem) and grain number (Gn), respectively the main source and the main sink.

Methods

A pot experiment was thus designed to assess the relative contributions of the source and sink to Nrem regulation. Using two cultivars of winter wheat (Triticum aestivum, ‘Apache’ and ‘Autan’), three pre-anthesis and two post-anthesis N fertilization levels were applied in order to vary the N sources, while ear trimming at anthesis reduced sink size.

Key Results

Unlike results observed at a scale of m2, the equation binding Nant to Nrem exhibited a negative intercept, challenging the concept of nitrogen remobilization efficiency. Before ear trimming, Gn fitted well to Nant, with a slope dependent on genotype. To obtain a sink variable that was less correlated with Nant, the difference δGn was calculated between actual grain number and that which could be predicted from culm N before trimming. A multiple regression then predicted Nrem (r2 = 0·95) from Nant, Nup and δGn, with fitting unbiased by fertilization treatment, trimming or genotype.

Conclusions

In untrimmed culms, δGn had a negligible effect, so that Nrem could be fitted to Nant and Nup only: grain N filling appeared to be determined by sources only (Nant and Nup), not by sink, and the reduction of Nrem by Nup was quantified. In these ‘normal’ cases, the regulation of Nrem should thus be located within the N sources themselves. In contrast, ear-trimming needs to be considered with caution as it introduced a sink limitation on Nrem; moreover one with an important genotype effect.Key words: Triticum aestivum, winter wheat, source/sink, grain filling, nitrogen uptake, grain number, nitrogen harvest index, nitrogen remobilization efficiency, genotype × environment  相似文献   

4.
Wheat starch development is a complex process and is markedly difference by changes in spikelet spatial position. The present study deals with endosperm starch granule distribution and spatial position during filling development. The study was conducted with pure starch isolated from wheat (Triticum aestivum L.), Jimai20 and Shannong1391, at 7–35 days after anthesis (DAA). The results showed that grain number, spikelet weight and grain weight per spikelet in different spatial position showed parabolic changes. Upper spikelets had highest starch and amylose content followed by basal spikelets, then middle spikelets. The paper also suggested the volume percents of B-type and A-type granule in grain of middle spikelets were remarkably higher and lower than those of basal and upper spikelets, respectively. However, no significant difference occurred in the number percents of the two type granule. The ratio of amylase to amylopectin was positively correlated with the volume proportion of 22.8–42.8 µm, but was negatively related to the volume proportion of <9.9 µm. The results indicated that the formation and distribution of starch granules were affected significantly by spikelet position, and grains at upper and basal spikelet had the potential of increasing grain weight through increasing the volume of B-type granules.  相似文献   

5.
G. Schilling 《Plant and Soil》1983,72(2-3):321-334
Summary Mineral nitrogen did not increase grain yield and seed protein levels ofVicia faba L. andLupinus luteus L. in field trials and pot experiments. Fixed N2 was substituted by mineral nitrogen in these cases because of inhibition of N2 fixation by mineral nitrogen. Contrary to these results mineral nitrogen increased grain yields and seed protein amounts ofLupinus albus L.,Pisum sativum L., andGlycine max. (L.) Merr. The nitrogen effect was caused at an early stage by saving energy due to inhibition of N2 fixation (measurement of gas exchange by means of IRGA). In case of the N application after flowering grain, yields and seed protein levels increased because the mineral N was an additional nitrogen source for plants. At this stage the plants had ceased fixing atmospheric nitrogen. The high sink activity of growing fruits induced a lack of assimilates in nodules (determined by means of14CO2 application). The N effect was therefore the consequence of the lower assimilate pool for supplying root nodules in these plants in comparison withVicia faba L. andLupinus luteus L. Hence it follows that response to mineral nitrogen can be a criterion for discovering more effective Rhizobium-host combinations.  相似文献   

6.
Zhenlin  Wang  Yanping  Yin  Mingrong  He  Hongming  Cao 《Photosynthetica》1998,35(3):453-459
Source-sink manipulation could regulate the net photosynthetic rate (PN) of winter wheat after anthesis, however, the direction and magnitude of the regulation varied with time after anthesis. The PN was significantly increased by source reduction at the initial time of grain filling, but sink reduction had little influence on the PN, which suggested that the sink (spike) limitation did not occur at this time. Source-sink relation markedly affected PN during rapid grain filling. The PN was increased by source reduction and decreased by sink reduction significantly, which indicated that PN was closely associated with the change of source or sink size. The effect of source-sink manipulation on PN had some relationship with the occurrence of plant senescence at the time of late grain filling. Source reduction accelerated the senescence and dropped the PN, meanwhile, sink reduction delayed the senescence and promoted the PN. A direct relation between the effect of source-sink manipulation on PN and stomatal limitation was not found. Removing one quarter of leaves (RQ) had little influence on spike development after anthesis. In this case there was enough compensation in source production through photosynthesis. Removing one half of leaves (RH) made grain mass per spike and mass of grains lowered, especially the grain mass in the top and base positions of spike declined markedly. The source supply was grain-limiting. Removing one quarter of spikelets (RS) was beneficial to grain-setting in the remaining spikelets, leading to the increase of grain mass. Thus promoting the source supply of photosynthates after anthesis is of major importance for grain to set and to develop.  相似文献   

7.
A very significant increase in N2(C2H2) reduction by Visum sativum L. infected with Rhizobium leguminosarum occurred when plants were grown in the light with 6 hr of CO2 enrichment (0.00120 atm). Plants grown for 4 wk under 0.00120 atm CO2 showed significant increases over control plants at 0.00032 atm CO2 in plant dry weight, N content, root nodule mass, number of nodules, and mean nodule dry weight. Acetylene-reduction assays, however, revealed no reproducible increase in nitrogenase activity/mg nodule in plants subjected to long-term CO2 enrichment. Both control and CO2-enriched plants optimized the sink/source ratio between the mass of nodules and the extranodular plant mass. The optimum ratio for N2 reduction by 4-week-old peas was 0.05. Long-term CO2 enrichment did not promote root nodule formation to a greater degree than total plant development, and increases in N content were directly proportional to increases in nodule mass. Morphological data revealed significantly greater deposits of starch in root nodules of plants grown under CO2-enriched conditions. The results are interpreted as showing that short-term increases in CO2 levels promote N2 reduction by affecting root nodule functioning, whereas long-term CO2 enrichment promotes N2 reduction by increasing total plant and root nodule development.  相似文献   

8.
以冬小麦品种山农8355和山农15为试验材料,研究了不同ABA喷期处理条件下,小麦花后穗颈节伤流变化及其对籽粒穗部性状与产量的影响。结果表明,多穗型品种SN15伤流强度呈现出单峰变化,而大穗型品种SN8355呈现一定的双峰变化趋势,其伤流强度在后期出现一个小高峰。不论是孕穗后期喷施ABA处理(T1)还是花后3d喷施ABA处理(T2),一定程度上均有利于花后穗颈节伤流的增加。各粒位籽粒粒重与体积在不同生育时期表现基本相同,大体上表现为T1处理较对照小,而T2处理则较对照大,即T2>CK>T1。施用ABA可改善穗部营养状况,最高增加穗粒数31.31%,平均提高小穗结实率2.79%,增加穗粒重7.90%-19.01%,并最终增加产量4.08%-9.81%。相关分析表明,穗颈节伤流强度在大多数生育时期与穗粒重关系密切,而群体伤流强度则与产量关系相对密切。研究表明,合理施用ABA能够调节小麦穗颈节伤流强度,从而可以优化穗部性状发育,利于产量的提高。  相似文献   

9.
Photosynthetic rate and yield formation in different maize hybrids   总被引:1,自引:0,他引:1  
The relationship between photosynthetic rate and yield formation processes of the newer and older maize hybrids were investigated. Leaf area at flowering (source) and kernel number (sink) of the newer hybrids were greater than the older ones although their light-saturated photosynthetic rate (Psat) were not greater than the older ones before flowering. After flowering, Psat and chlorophyll content of the newer hybrids declined more slowly than the older ones. They not only distributed almost all photosynthates produced after flowering to grain but also reallocated some reserved photosynthates produced before flowering to grain. The newer hybrids exhibited greater grain mass than the older ones mostly because they could optimally regulate the photosynthetic rate and yield formation processes to maximize grain mass.  相似文献   

10.
Sharma-Natu  Poonam  Khan  F.A.  Ghildiyal  M.C. 《Photosynthetica》1998,34(4):537-543
Wheat (T. aestivum) cvs. Kalyansona and Kundan grown under atmospheric (CA) and elevated CO2 concentrations (650±50 cm3 m-3 - CE) in open top chambers were examined for net photosynthetic rate (PN), stomatal limitation (l s) of P N, ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, and saccharide content of the leaves. The P N values of both CA- and CE-grown plants compared at the same CO2 concentration showed a down regulation under CE at the post-anthesis stage. The negative acclimation of P N appeared to be due to both stomatal and mesophyll components, and the RuBPC activity got also adjusted. There was a decrease in activation state of RuBPC under CE. In connection with this, an increased accumulation of saccharides in wheat leaf under CE was observed. Kalyansona, owing to its larger sink potential in terms of the number of grains, showed a greater enhancement under CE in both post-ear emergence dry matter production and grain yield. Under CE, this cultivar also showed a lower down regulation of P N than Kundan.  相似文献   

11.
Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification – a potential source of the potent greenhouse gas, nitrous oxide (N2O) – and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2O. Measurements of net N2O fluxes alone yield little insight into the different effects of redox conditions on N2O production and consumption. We used in situ measurements of gross N2O fluxes across a salt marsh elevation gradient to determine how soil N2O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid‐marshes relative to the high marsh (P < 0.001). Net N2O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m?2 h?1, ?2.2 ± 0.9 μg N m?2 h?1, and 0.67 ± 0.57 μg N m?2 h?1 in the low, mid, and high marshes, respectively. Both net N2O release and uptake were observed in the low and high marshes, but the mid‐marsh was consistently a net N2O sink. Gross N2O production was highest in the low marsh and lowest in the mid‐marsh (P = 0.02), whereas gross N2O consumption did not differ among marsh zones. Thus, variability in gross N2O production rates drove the differences in net N2O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2O in salt marshes to improve our predictions of changes in net N2O fluxes caused by future sea level rise.  相似文献   

12.
When kinetin was applied to the source organ (flag leaf) of rice (Oryza sativa L. cv. Ratna), foliar senescence was delayed and grain yield per plant (as evidenced by grain weight, grain/straw weight ratio and 1,000 grain growth) was increased through the increase of sink activity (increase in dry weight of the grains/plant), duration of sink capacity as well as photosynthetic ability of the glumes (as determined by the chlorophyll content of the glumes of the developing grains). However, application of kinetin to the sink organs (fruits), promoted senescence of the source but increased the yield by increasing the sink capacity and 1,000 grain growth mostly at the earlier stage of reproductive development. Lower sterility percentage was associated with higher grain yield of the plant by kinetin treatments. ABA applied either to the source or the sink promoted leaf senescence and reduced the grain yield by reducing the sink activity, harvest index, sink capacity duration and increasing the sterility percentage. Thousand grain dry weight at harvest did not vary significantly amongst the treatments. It was concluded that nutrient drainage was associated with the correlative influence of fruit on the monocarpic senescence of rice plant and that a competetion for differential allocation of cytokinin and ABA in the source and sink organs initiates this senescence syndrome.  相似文献   

13.
Both long term and batch experiments were carried out to identify the sources of the N2O emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) under different aeration rates. The obtained results showed that aeration rate has an important effect on the N2O emission of A/O SBR and most of the N2O was emitted during the aerobic phase. During the anoxic phase, nitrate ammonification was the major source of N2O emission while denitrification performed as a sink of N2O, in all three bioreactors. The N2O emission mechanisms during the aerobic phase differed with the aeration rate. At low and high aeration rates (Run 1 and Run 3), both coupled-denitrification and nitrifier denitrification were ascribed to be the source of N2O emission. At mild aeration rate (Run 2), nitrifier denitrification by Nitrosomonas-like ammonia oxidizing-bacterial (AOB) was responsible for N2O emission while coupled-denitrification turned out to be a sink of N2O because of the presence of inner anaerobic region in sludge flocs.  相似文献   

14.
Photosynthetic acclimation to elevated CO2 in wheat cultivars   总被引:2,自引:0,他引:2  
Wheat (T. aestivum) cvs. Kalyansona and Kundan grown under atmospheric (CA) and elevated CO2 concentrations (650±50 cm3 m-3 - CE) in open top chambers were examined for net photosynthetic rate (PN), stomatal limitation (l s) of P N, ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, and saccharide content of the leaves. The P N values of both CA- and CE-grown plants compared at the same CO2 concentration showed a down regulation under CE at the post-anthesis stage. The negative acclimation of P N appeared to be due to both stomatal and mesophyll components, and the RuBPC activity got also adjusted. There was a decrease in activation state of RuBPC under CE. In connection with this, an increased accumulation of saccharides in wheat leaf under CE was observed. Kalyansona, owing to its larger sink potential in terms of the number of grains, showed a greater enhancement under CE in both post-ear emergence dry matter production and grain yield. Under CE, this cultivar also showed a lower down regulation of P N than Kundan. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The ontogenetic changes in growth, and the diurnal changes in net photosynthetic rate (PN) and stomatal conductance were studied in two peanut cultivars of different habit groups. Significant cultivar differences were noticed: the prostrate cv. M 13 was found superior to the erect cv. J 11 in all the parameters studied. Specific leaf mass and the rates of gross photosynthesis and respiration were higher in cv. M 13 than in cv. J 11. In vegetative phase, the maximum PN was in cv. J 11, but in pod filling phase, it was in cv. M 13. The differences in growth and PN of the cultivars were significant after the onset of reproductive sink. Therefore, the screening for higher PN has to be made at the pod-filling phase, and between 09.00 and 10.00 of the day (at optimum temperature).  相似文献   

16.
Based on current climate scenarios, a higher frequency of summer drought periods followed by heavy rainfall events is predicted for Central Europe. It is expected that drying/rewetting events induce an increased matter cycling in soils and may contribute considerably to increased emissions of the greenhouse gas N2O on annual scales. To investigate the influence of drying/rewetting events on N2O emissions in a mature Norway spruce forest in the Fichtelgebirge area (NE Bavaria, Germany), a summer drought period of 46 days was induced by roof installations on triplicate plots, followed by a rewetting event of 66 mm experimental rainfall in 2 days. Three nonmanipulated plots served as controls. The experimentally induced soil drought was accompanied by a natural drought. During the drought period, the soil of both the throughfall exclusion and control plots served as an N2O sink. This was accompanied by subambient N2O concentrations in upper soil horizons. The sink strength of the throughfall exclusion plots was doubled compared with the control plots. We conclude that the soil water status together with the soil nitrate availability was an important driving factor for the N2O sink strength. Rewetting quickly turned the soil into a source for atmospheric N2O again, but it took almost 4 months to turn the cumulative soil N2O fluxes from negative (sink) to positive (source) values. N2O concentration and isotope analyses along soil profiles revealed that N2O produced in the subsoil was subsequently consumed during upward diffusion along the soil profile throughout the entire experiment. Our results show that long drought periods can lead to drastic decreases of N2O fluxes from soils to the atmosphere or may even turn forest soils temporarily to N2O sinks. Accumulation of more field‐scale data on soil N2O uptake as well as a better understanding of underlying mechanisms would essentially advance our knowledge of the global N2O budget.  相似文献   

17.
Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4, and N2O) sink capacity of grasslands as well as other terrestrial ecosystems. Robust predictions of the net GHG sink strength of grasslands depend on how experimental N loads compare to projected Ndep rates, and how accurately the relationship between GHG fluxes and Ndep is characterized. A literature review revealed that the vast majority of experimental N loads were higher than levels these ecosystems are predicted to experience in the future. Using a process‐based biogeochemical model, we predicted that low levels of Ndep either enhanced or reduced the net GHG sink strength of most grasslands, but as experimental N loads continued to increase, grasslands transitioned to a N saturation‐decline stage, where the sensitivity of GHG exchange to further increases in Ndep declined. Most published studies represented treatments well into the N saturation‐decline stage. Our model results predict that the responses of GHG fluxes to N are highly nonlinear and that the N saturation thresholds for GHGs varied greatly among grasslands and with fire management. We predict that during the 21st century some grasslands will be in the N limitation stage where others will transition into the N saturation‐decline stage. The linear relationship between GHG sink strength and N load assumed by most studies can overestimate or underestimate predictions of the net GHG sink strength of grasslands depending on their N baseline status. The next generation of global change experiments should be designed at multiple N loads consistent with future Ndep rates to improve our empirical understanding and predictive ability.  相似文献   

18.
Sulfur (S) is an essential nutrient element required in a large quantity by mustard. S regulates photosynthesis and plant growth through improving nitrogen (N) acquisition. Mustard cultivars Alankar, Varuna, Pusa Jai Kisan, and SS2 differing in S accumulation capacity calculated as sulfate transport index (STI) were tested for ATP-sulfurylase activity, S and N accumulation, photosynthesis, and shoot dry mass (DM) at 30 and 60 d after sowing (DAS). The activity of ATP-sulfurylase, shoot N content, net photosynthetic rate (P N), leaf area, and shoot DM of the cultivars were in the order: Pusa Jai Kisan>Alankar>Varuna>SS2. ATP-sulfurylase activity was strongly and positively correlated with P N and shoot DM in all the cultivars. Hence ATP-sulfurylase activity may be used as a physiological trait for augmenting photosynthesis and shoot DM.  相似文献   

19.
Four continuous culture fermenters were used in a randomized block design to evaluate the effects of grain feeding frequency and rumen undegradable protein (RUP) on nutrient utilization and microbial protein synthesis with high quality grass. Two grain rations fed two or four times per day were arranged in a 2×2 factorial with four replications. The grain rations contained 60% and 45% of CP as RUP, and similar total nonstructural carbohydrate (TNC) content (64% of DM). Grain was fed separately from freeze dried, pelleted pasture (56% of DM). Fermenters were maintained at a liquid dilution rate of 12%/h and a solids retention time of 20 h. Regardless of RUP level or grain feeding frequency, true DM, OM, and CP digestibilities averaged 72.1%, 73.3%, and 61.8%, respectively with no differences due to treatments. Apparent digestibility of ADF, NDF, and TNC were also not affected by treatments, and averaged 55.9%, 46.2%, and 80.9%, respectively. The production of the major VFA (acetic, propionic, and butyric) were not affected by treatment and averaged 56.4, 21.2 and 16.3 Mmol/ml, respectively. The interaction of grain feeding frequency and dietary RUP content was significant for isovalerate production. Increasing the grain feeding frequency significantly increased valerate production. Ammonia N (NH3–N) concentration and flows were decreased with higher RUP supplementation, and by feeding grain 4X/day (P<0.05). Non NH3–N flows were also higher with 4X/day grain feeding. Feeding a high RUP grain reduced the CP percentage in bacteria and tended to cause a reduction in rumen pH (P>0.10). The interaction of time during the day when pH was measured and feeding frequency was significant (P<0.001) reduced the diurnal variation in pH and when grain feeding frequency was measured to 4X/day.  相似文献   

20.
Khan  N.A. 《Photosynthetica》2004,42(3):477-480
The pattern of activity of 1-aminocyclopropane carboxylic acid synthase (ACS) was similar to photosynthetic and growth traits observed at 30, 45, and 60 d after sowing in mustard (Brassica juncea L.) cultivars Varuna and RH 30 differing in photosynthetic capacity. Higher activity of ACS and therefore ethylene release in Varuna than RH 30 increased stomatal conductance, intercellular CO2 concentration, carboxylation rate (carbonic anhydrase and intrinsic water use efficiency), and thus net photosynthetic rate (P N) and leaf and plant dry masses (DM) at all sampling times. Moreover, Varuna also had larger leaf area which contributed to higher P N and DM. A positive correlation between ACS activity and P N and leaf area was found in both the cultivars. Thus ACS activity may affect P N through ethylene-induced changes on foliar gas exchange and leaf growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号