首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Váró  J K Lanyi 《Biochemistry》1990,29(29):6858-6865
Transient pH changes were measured with phenol red and chlorophenol red in the 30-microseconds-50-ms time range during the photocycle of bacteriorhodopsin (BR), the light-driven proton pump. At pH greater than or equal to 7, the results confirmed earlier data and suggestions that one proton is released during the L----M reaction, and taken up again during the decay of N. These are likely to be steps in the proton transport process. At pH less than 7, however, the time-resolved pH traces were complex and indicated additional protonation reactions. The data were explained by a model which assumed pH-dependent protonation states for M and N which varied from -1 to 0, and for O which varied from 0 to + 2, relative to BR. If the kinetics of the vectorial proton translocation process were taken as pH independent, this treatment of the data suggested that a residue with a pKa of 5.9 was made protonable in M and N and two residues with pKa's of 6.5 were made cooperatively protonable in O. The additional protons detected are not necessarily in the vectorial proton transfer pathway (i.e., they are probably "Bohr protons"), and while they must reflect conformational and/or neighboring ionization changes in the BR as it passes through the M, N, and O states, their role, if any, in the transport is uncertain.  相似文献   

2.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

3.
V-type ATPases are multi-protein complexes, which acidify cellular compartments in eukaryotes. They pump protons against an ion gradient, driven by a mechano-chemical framework that exploits ATP hydrolysis as an energy source. This process drives the rotation of the so-called c-ring, a membrane embedded complex in the Vo-domain of the V-type ATPase, resulting in translocation of protons across the membrane. One way in which the enzyme is regulated is by disassembly and reassembly of the V1-domain with the Vo-domain, which inactivates and reactivates the enzyme, respectively. Recently, structural data for the isolated Vo-domain from S. cerevisiae in an inactivated state were reported, suggesting the location of previously unobserved proton access pathways within the cytoplasmic and luminal compartments of the stator subunit a in Vo. However, the structural rationale for this inactivation remained unclear. In this study, the water accessibility pathway at the cytoplasmic side is confirmed, and novel insights into the role of the luminal channel with respect to the inactivation mechanism are obtained, using atomic-resolution molecular dynamics simulations. The results show that protonation of the key-glutamate, located in the c-ring of the Vo-domain, and facing the luminal compartment is preserved, when residing in the V1-depleted state. Maintaining the protonation of this essential glutamate is necessary to lock the luminal channel in the inactive, solvent-free state. Based on these theoretical observations and previous experimental results, a model of the proton translocation mechanism in the Vo-domain from V-type ATPases is proposed.  相似文献   

4.
To define adequately enzyme activation/inhibition mechanisms as a function of pH, it is necessary to characterize the effector-induced pK shifts on both the free enzyme and on the enzyme-substrate complex. On the basis of our recent three-protons model for sucrase [Vasseur, van Melle, Frangne & Alvarado (1988) Biochem. J. 251, 667-675], we show how the 'fundamental' pK values, deduced from the classical double-logarithmic transformations, are insufficient to generate the required information. This insufficiency derives from the fact that, for sucrase, the acid ionization constant, K1, is a molecular constant that involves complex, V-type plus K-type, activatory and inhibitory kinetic effects. As a consequence, substrate-induced pK shifts cannot be interpreted correctly only by using the fundamental pK approach, because an unequal number of key protons is involved, depending on whether the free enzyme or the enzyme-substrate complex is considered. We demonstrate how this problem can be solved by using the 'theoretical' pK values, derived from the reciprocals of the Michaelis pH functions, i.e. Cha's fractional concentration factors. The procedure we propose, which is general, has the advantage of yielding all the macroscopic pK values for any given model, as calculated from the microscopic pK values. Furthermore, it permits predicting pK shifts as a function of [S] and/or [A] (where S is the substrate and A is the allosteric modifier), an objective that cannot be attained by using the double-logarithmic plot approach. Finally, we describe the relation existing between the fundamental and the theoretical pK values.  相似文献   

5.
The nature of the essential residues at the active site of Harding-Passey mouse melanoma tyrosinase has been explored by kinetic and photochemical modification studies. Km for L-dopa depends strongly on pH, so that acidic pH prevents the formation of the enzyme-substrate complex because the protonation of an enzyme group with a pKa of 6.6. Halide ions inhibit competitively the enzyme activity, being F the more potent one. This inhibition is also pH-dependent, showing the involvement of a protonatable group of the enzyme with apparent pKa ranging from 5.9 to 7.0. Tyrosinase has also been modified with visible light using Rose Bengal as photosensitizer, yielding a pH-dependent photoinactivation, characteristic of histidyl residues. All these results strongly support that histidine plays an important role in the dopa-oxidase activity of the enzyme, very probably acting as the ligand of copper at the active site of the enzyme.  相似文献   

6.
Electron nuclear double resonance (ENDOR) of protons at Type 2 and Type 1 cupric active sites correlates with the enzymatic pH dependence, the mutation of nearby conserved, nonligating residues, and electron transfer in heterologously expressed Rhodobacter sphaeroides nitrite reductase. Wild-type enzyme showed a pH 6 activity maximum but no kinetic deuterium isotope effect, suggesting protons are not transferred in the rate-limiting step of nitrite reduction. However, protonatable Asp129 and His287, both located near the Type 2 center, modulated enzyme activity. ENDOR of the wild-type Type 2 center at pH 6.0 revealed an exchangeable proton with large hyperfine coupling. Dipolar distance estimates indicated that this proton was 2.50-2.75 or 2.25-2.45 A from Type 2 copper in the presence or absence of nitrite, respectively. This proton may provide a properly oriented hydrogen bond to enhance water formation upon nitrite reduction. This proton was eliminated at pH 5.0 and showed a diminished coupling at pH 7.5. Mutations of Asp129 and His287 reduced enzyme activity and altered the exchangeable proton hyperfine spectra. Mutation of Asp129 prevented a pH-dependent change at the Type 1 Cys167 ligand as observed by Cys C(beta) proton ENDOR, implying there is a Type 2 and pH-dependent alteration of the Type 1 center. Mutation of the Type 1 center ligand Met182 to Thr and mutation of Asp129 increased the activation energy for nitrite reduction. Involvement of both the Type 1 center and Asp129 in modulating activation energy shows that electron transfer from the Type 1 center to a nitrite-ligated Type 2 center is rate-limiting for nitrite reduction. Mutation of Ile289 to Ala and Val caused minor perturbation to enzyme activity, but as detected by ENDOR, allowed formate binding. Thus, bulky Ile289 may exclude non-nitrite ligands from the Type 2 active site.  相似文献   

7.
Jack bean urease (urea aminohydrolase, EC 3.5.1.5) was immobilized onto modified non-porous poly(ethylene glycol dimethacrylate/2-hydroxy ethylene methacrylate), (poly(EGDMA/HEMA)), microbeads prepared by suspension copolymerization for the potential use in hemoperfusion columns, not previously reported. The conditions of immobilization; enzyme concentration, medium pH, substrate and ethylene diamine tetra acetic acid (EDTA) presence in the immobilization medium in different concentrations, enzyme loading ratio, processing time and immobilization temperature were investigated for highest apparent activity. Immobilized enzyme retained 73% of its original activity for 75 days of repeated use with a deactivation constant kd = 3.72 x 10(-3) day(-1). A canned non-linear regression program was used to estimate the intrinsic kinetic parameters of immobilized enzyme with a low value of observable Thiele modulus (phi < 0.3) and these parameters were compared with those of free urease. The best-fit kinetic parameters of a Michaelis-Menten model were estimated as Vm = 3.318 x 10(-4) micromol/s mg bound enzyme protein, Km = 15.94 mM for immobilized, and Vm = 1.074 micromol NH3/s mg enzyme protein, Km = 14.49 mM for free urease. The drastic decrease in Vm value was attributed to steric effects, conformational changes in enzyme structure or denaturation of the enzyme during immobilization. Nevertheless, the change in Km value was insignificant for the unchanged affinity of the substrate with immobilization. For higher immobilized urease activity, smaller particle size and concentrated urease with higher specific activity could be used in the immobilization process.  相似文献   

8.
The pH variation of the kinetic parameters for the oxidative decarboxylation of L-malate and decarboxylation of oxalacetate catalyzed by malic enzyme has been used to gain information on the catalytic mechanism of this enzyme. With Mn2+ as the activator, an active-site residue with a pK of 5.4 must be protonated for oxalacetate decarboxylation and ionized for the oxidative decarboxylation of L-malate. With Mg2+ as the metal, this pK is 6, and, at high pH, V/K for L-malate decreases when groups with pKs of 7.8 and 9 are deprotonated. The group at 7.8 is a neutral acid (thought to be water coordinated to Mg2+), while the group at 9 is a cationic acid such as lysine. The V profile for reaction of malate shows these pKs displaced outward by 1.4 pH units, since the rate-limiting step is normally TPNH release, and the chemical reaction, which is pH sensitive, is 25 times faster. TPN binding is decreased by ionization of a group with pK 9.3 or protonation of a group with pK 5.3. The pH variation of the Km for Mg shows that protonation of a group with pK 8.7 (possibly SH) decreases metal binding in the presence of malate by a factor of 1400, and in the absence of malate by a factor of 20. A catalytic mechanism is proposed in which hydride transfer is accompanied by transfer of a proton to the group with pK 5.4-6, and enolpyruvate is protonated by water coordinated to the Mg2+ (pK 7.8) after decarboxylation and release of CO2.  相似文献   

9.
M A Levy  M Brandt  A T Greway 《Biochemistry》1990,29(11):2808-2815
A solubilized preparation of steroid 5 alpha-reductase (EC 1.3.1.30) from rat liver has been used in studies focused toward an understanding of the kinetic mechanism associated with enzyme catalysis. From the results of analyses with product and dead-end inhibitors, a preferentially ordered binding of substrates and release of products from the surface of the enzyme is proposed. The observations from these experiments were identical with those using the steroid 5 alpha-reductase activity associated with rat liver microsomes. The primary isotope effects on steady-state kinetic parameters when [4S-2H]NADPH was used also were consistent with an ordered kinetic mechanism. Normal isotope effects were observed for all three kinetic parameters (Vm/Km for both testosterone and NADPH and Vm) at all substrate concentrations used experimentally. Upon extrapolation to infinite concentration of testosterone, the isotope effect on Vm/Km for NADPH approached unity, indicating that the nicotinamide dinucleotide phosphate is the first substrate binding to and the second product released from the enzyme. The isotope effects on Vm/Km for testosterone at infinite concentration of cofactor and on Vm were 3.8 +/- 0.5 and 3.3 +/- 0.4, respectively. Data from the pH profiles of these three steady-state parameters and the inhibition constants (1/Ki) of competitive inhibitors versus both substrates indicate that the binding of nicotinamide dinucleotide phosphate involves coordination of its anionic 2'-phosphate to a protonated enzyme-associated base with an apparent pK near 8.0. From these results, relative limits have been placed on several of the internal rate constants used to describe the ordered mechanism of the rat liver steroid 5 alpha-reductase.  相似文献   

10.
The enzyme ketol acid reductoisomerase catalyzes the second common reaction in the biosynthesis of the branched chain amino acids. The reaction is complex as an alkyl migration and a ketone reduction apparently occur as separate steps during the conversion of acetolactate to 2,3-dihydroxy-3-methylbutyrate. This paper reports on the pH dependence of the kinetic parameters of the enzyme. The pH variation of log(V/K) for acetolactate was fit to an equation describing a bell-shaped curve, indicating an acid and a base catalyst for the reaction. In the reverse direction, V/K for 2,3-dihydroxy-3-methylbutyrate is constant over the pH range 8 to 10 and decreases below pH 8 with the ionization of two catalytic groups. The pH dependence of the V/K values for reduction of the kinetically competent intermediate and analogs of this intermediate are also described by a bell-shaped curve. The pH dependence of the V/K for alkyl migration of this intermediate indicates a single base catalyst for this reaction. We observe no deuterium kinetic isotope effect on V or V/K for the reaction of acetolactate at any pH. We observe a pH-dependent kinetic isotope effect on V/K for the reduction of the intermediate, the magnitude of which is metal ion dependent. Larger KIE's are observed in the presence of Mn2+ as opposed to Mg2+. In the reverse reaction there is a pH-dependent kinetic isotope effect on V/K. Based on the pH dependence of the kinetic parameters and the kinetic isotope effects, we propose a base-catalyzed proton shuttle mechanism for the alkyl migration reaction followed by an acid-assisted ketone reduction by NADPH.  相似文献   

11.
The delta 5-3-ketosteroid isomerase (EC 5.3.3.1) of Pseudomonas testosteroni catalyzes the conversion of androst-5-ene-3,17-dione to androst-4-ene-3,17-dione by a stereospecific transfer of the 4 beta-proton to the 6 beta-position. The reaction involves two steps: (a) a rate-limiting concerted enolization, comprising protonation of the 3-carbonyl oxygen by the phenolic hydroxyl group of Tyr-14 and abstraction of the 4 beta-proton by the carboxylate group of Asp-38, and (b) rapid reketonization of the dienol, which may or may not be concerted. The active-site mutant D38N, which lacks the base responsible for proton transfer, is about 10(6.0)-fold less active catalytically than the wild-type enzyme. With the D38N mutant it was demonstrated spectroscopically that the enzymatic reaction involves the conversion of the substrate to both the dienol and its anion as tightly enzyme-bound intermediates, which are then converted much more slowly to the alpha,beta-unsaturated product. In contrast to the mechanism of the wild-type enzyme, the enolization reaction promoted by the D38N mutant is not stereospecific with respect to removal of the 4 beta-proton and shows primary kinetic isotope effects on enolization when either 4 alpha or 4 beta or both of these protons are replaced by deuterium. Kinetic isotope effects obtained with deuterated substrates, solvent, or combinations of the two indicate that, unlike in the wild-type enzyme, protonation of the carbonyl oxygen and removal of the C-4 proton are not concerted in the D38N mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Kuczek M 《Bio Systems》1999,54(1-2):71-76
This paper presents a simple solution to the problem of approximating the calculated curve of reaction progress to the measured curve which is usually disturbed by initial oscillation of auxiliary lactate dehydrogenase (LDH) reaction. The experiments leading to the determination of the apparent Km for phosphoenolpyruvate (PEP) and Vm were performed. For precise estimation of kinetic parameters (Km and Vm) of the M1 isozyme of pyruvate kinase (PK), measured by coupling it to LDH reaction, the sequence of Michaelis-Menten for pyruvate kinase and second-order kinetics for lactate dehydrogenase reaction as well as a non-zero initial concentration of lactate was assumed. The functions of apparent Km and Vm of pyruvate kinase with respect to phosphate concentration, computed by an analysis of the total reaction progress curves, indicate that the reaction mixture contains an uncompetitive inhibitor of pyruvate kinase, and that the phosphate binds this inhibitor. The proposed simple mathematical model of pyruvate kinase Km and Vm increase by inorganic phosphate assumes that the pyridine nucleotides (NAD-derivatives) are kinase inhibitors. An approximate dissociation constant for pyridine nucleotides-phosphate complex and true Km of pyruvate kinase for PEP were estimated. The proposed model fits exactly the entire measured reaction process.  相似文献   

13.
Studies were conducted on the depolymerization of polyadenylic acid (poly (A)) by RNAse A (EC 3.1.4.22) depending on the pH (pH 5-8). The results showed that depending on the pH, the ratio Vmax/Km was analogous to that described earlier for nucleoside-2', 3'-cyclophosphates and dinucleoside phosphates. This indicates that depolymerization of poly (A), transesterification and hydrolysis of specific substrates is achieved by the same ionizing groups of the enzyme with pKa 5.4 and pKb 6.4. The rate of degradation of poly (A) is also influenced by the state of adenine ionization, the protonation of which leads to the formation of a double helical poly (A), and does not serve as a substrate for RNAse A. The low rate for the depolymerization of poly (A) in the presence of RNAse A is related to a decrease in the turnover number of the enzyme, and an increase in the molecular weight of the enzyme (RNAse dimer), leads to a decrease in the Km, and does not effect Vmax. This indicates that the rate of depolymerization of polynucleotides is determined by orientation of factors. On the basis of the comparison of the resultant kinetic data, and the structure of the enzyme inhibitory complexes of RNAse S, which were studied by the method of x-ray structural analysis, a conclusion was reached on the kinetic characteristics of RNAse A specificity with respect to polymeric substrates, which is determined by the orinetation of the ribose phosphate relative to the catalytic groups of the active site.  相似文献   

14.
Frederick KK  Ballou DP  Palfey BA 《Biochemistry》2001,40(13):3891-3899
p-Hydroxybenzoate hydroxylase (PHBH) hydroxylates activated benzoates using NADPH as a reductant and O(2) as an oxygenating substrate. Because the flavin, when reduced, will quickly react with oxygen in either the presence or absence of a phenolic substrate, it is important to regulate flavin reduction to prevent the uncontrolled reaction of NADPH and oxygen to form H(2)O(2). Reduction is controlled by the protonation state of the aromatic substrate p-hydroxybenzoate (pOHB), which when ionized to the phenolate facilitates the movement of flavin between two conformations, termed "in" and "out". When the hydrogen bond network that provides communication between the substrate and solvent is disrupted by changing its terminal residue, His72, to Asn, protons from solution no longer equilibrate rapidly with pOHB bound to the active site [Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158]. Thus, one population of the His72Asn enzyme reduces rapidly and has the phenolate form of pOHB bound at the active site and the flavin in the out conformation. The remaining population of the His72Asn enzyme reduces slowly and has the phenolic form of pOHB bound and the flavin in the in conformation. We have investigated the mechanisms of proton transfer between solvent and pOHB bound to the His72Asn form of the enzyme by double-mixing and single-mixing stopped-flow experiments. We find that, depending on the initial ionization state of bound pOHB and the new pH of the solution, the ionization/protonation of pOHB proceeds through the direct reaction of hydronium or hydroxide with the enzyme-ligand complex and leads to the conversion of one flavin conformation to the other. Our kinetic data indicate that the enzyme with the flavin in the in conformation reacts in two steps. Inspection of crystal structures suggests that the hydroxide ion would react at the re-face of the flavin, and its reaction with pOHB is limited by the movement of Pro293, a conserved residue in similar flavoprotein hydroxylases. We hypothesize that this type of breathing mode by the protein may have been used to compensate for the lack of an efficient proton-transfer network in ancestral hydroxylases, permitting useful catalysis prior to the emergence of specialized proton-transfer mechanisms.  相似文献   

15.
The surface potential of purple membranes and the release of protons during the bacteriorhodopsin photocycle have been studied with the covalently linked pH indicator dye, fluorescein. The titration of acidic lipids appears to cause the surface potential to be pH-dependent and causes other deviations from ideal behavior. If these anomalies are neglected, the appearance of protons can be followed by measuring the absorption change of fluorescein bound to various residues at the extracellular surface. Contrary to widely held assumption, the activation enthalpies of kinetic components, deuterium isotope effects in the time constants, and the consequences of the D85E, F208R, and D212N mutations demonstrate a lack of direct correlation between proton transfer from the buried retinal Schiff base to D85 and proton release at the surface. Depending on conditions and residue replacements, the proton release can occur at any time between the protonation of D85 and the recovery of the initial state. We conclude that once D85 is protonated the proton release at the extracellular protein surface is essentially independent of the chromophore reactions that follow. This finding is consistent with the recently suggested version of the alternating access mechanism of bacteriorhodopsin, in which the change of the accessibility of the Schiff base is to and away from D85 rather than to and away from the extracellular membrane surface.  相似文献   

16.
We have measured the paramagnetic contribution to the magnetic relaxation rate of solvent protons in highly purified, buffer- and salt-free solutions of Co(2+)-substituted human carbonic anhydrase B (HCAB), as a function of pH in the range 5.5-10 and as a function of magnetic field. We have also measured the optical absorption at 640 nm to characterize the enzyme. The relaxation rates vary with pH much as does the CO(2) hydration activity, increasing with increasing pH. We find that the relaxation rates at all intermediate values of pH can be described as linear combinations of the rates obtained at the extremes of pH used, indicating the existence of low- and high-pH forms of the enzyme with pH-dependent concentrations. The optical data can be similarly represented. The fraction of high-pH form present, determined from either the relaxation or optical data, has a pK(a) of approximately 7.6 when approximated by a single ionization. The data are very similar to that for HCAB in the presence of buffer, in contrast to the bovine enzyme for which the pK(a) is affected substantially by the presence of sulfate. Previous analysis of the high relaxation rates at high pH indicated rapid exchange of Co(2+)-liganded protons, possible only if these exchanging protons were conveyed by water molecules. On the other hand, the present demonstration of the existence of two forms of HCAB in highly purified solutions, coupled with other data, argues strongly for ionization of a water molecule ligand of the metal ion at the active site, with OH(-) as the solvent-donated ligand at high pH. We propose a mechanism of ligand exchange at high pH that reconciles these ostensibly conflicting requirements by invoking a pentacoordinate intermediate having both OH(-) and H(2)O as ligands. Proton exchange can be rapid between these ligands because charge transfer without net ionization can occur, so that the leaving water can carry away the initial OH(-). The low-pH form is a thermal mixture of tetra- and pentacoordinate species, the latter having low relaxation rates by analogy with inhibitor derivatives of the enzyme and model systems. The proposed associative ligand-exchange mechanism reconciles the distinctions between the OH- and H(2)O-models of carbonic anhydrase by merging them, providing the first model is consistent with the observed pH dependence of hydration activity, optical absorption, and solvent magnetic relaxation.  相似文献   

17.
Lear JD 《FEBS letters》2003,552(1):17-22
The M2 proton channel from influenza A virus forms proton-selective ion channels, which are the target of the drug amantadine. Here, existing experimental data are quantitatively examined for insights into mechanisms to account for the pH- and voltage-dependences of M2 proton conduction. The analysis shows that a model involving protonation equilibria of His37, including pH-dependent changes in the relative rates of diffusion on either side of the pore, is quantitatively able to account for recently reported electrophysiological data examining the pH- and voltage-dependences of Rostock and Weybridge strain M2 proton conduction.  相似文献   

18.

Background  

The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments.  相似文献   

19.
A proton electrochemical potential across the membranes of photosynthetic purple bacteria is established by a light-driven proton pump mechanism: the absorbed light in the reaction center initiates electron transfer which is coupled to the vectorial displacement of protons from the cytoplasm to the periplasm. The stoichiometry and kinetics of proton binding and release can be tracked directly by electric (glass electrodes), spectrophotometric (pH indicator dyes) and conductimetric techniques. The primary step in the formation of the transmembrane chemiosmotic potential is the uptake of two protons by the doubly reduced secondary quinone in the reaction center and the subsequent exchange of hydroquinol for quinone from the membrane quinone-pool. However, the proton binding associated with singly reduced promary and/or secondary quinones of the reaction center is substoichiometric, pH-dependent and its rate is electrostatically enhanced but not diffusion limited. Molecular details of protonation are discussed based on the crystallographic structure of the reaction center of purple bacteriaRb. sphaeroides andRps. viridis, structure-based molecular (electrostatic) calculations and mutagenesis directed at protonatable amino acids supposed to be involved in proton conduction pathways.  相似文献   

20.
Proton transport by the nitrate-insensitive, vanadate-sensitive ATPase in Kl-washed microsomes and reconstituted vesicles from maize (Zea mays L.) roots was followed by changes in acridine orange absorbance in the presence of either KNO3 or KCl. Data from such studies obeyed a kinetic model in which net proton transport by the pump is the difference between the rate of proton transport by the action of the ATPase and the leak of protons from the vesicles in the direction opposite from the pump. After establishing the steady state proton gradient, the rate of return of transported protons was found to obey first-order kinetics when the activity of the ATPase was completely and rapidly stopped. The rate of return of these protons varied with the quencher used. When the substrate Mg:ATP was depleted by the addition of either EDTA or hexokinase, the rate at which the proton gradient collapsed was faster than when vanadate was used as the quencher. These trends were independent of the anion accompanying the K and the transport assay used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号