首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SYNOPSIS. Tetrahymena pyriformis, strain HSM, do not have glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but contain transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose-5-phosphate 3-epimerase, and ribokinase. The nonoxidative enzymes of the pentose phosphate shunt function in metabolism as indicated by the incorporation of label from [1-14C]ribose into CO2 and glycogen and by the increase in total glycogen content of cultures supplemented with ribose.  相似文献   

2.
Transketolase, one of the enzymes in the nonoxidative branch of the pentose phosphate pathway, operates to shuttle ribose 5-phosphate and glycolytic intermediates together with transaldolase, and might be involved in the availability of ribose 5-phosphate, a precursor of nucleotide biosynthesis. The tkt and tal genes encoding transketolase and transaldolase, respectively, were cloned from the typical nucleotide- and nucleoside-producing organism Corynebacterium ammoniagenes by a PCR approach using oligonucleotide primers derived from conserved regions of each amino acid sequence from other organisms. Enzymatic and molecular analyses revealed that the two genes were clustered on the genome together with the glucose 6-phosphate dehydrogenase gene (zwf). The effect of transketolase modifications on the production of inosine and 5'-xanthylic acid was investigated in industrial strains of C. ammoniagenes. Multiple copies of plasmid-borne tkt caused about tenfold increases in transketolase activity and resulted in 10-20% decreased yields of products relative to the parents. In contrast, site-specific disruption of tkt enabled both producers to accumulate 10-30% more products concurrently with a complete loss of transketolase activity and the expected phenotype of shikimate auxotrophy. These results indicate that transketolase normally shunts ribose 5-phosphate back into glycolysis in these biosynthetic processes and interception of this shunt allows cells to redirect carbon flux through the oxidative pentose pathway from the intermediate towards the purine-nucleotide pathway.  相似文献   

3.
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.  相似文献   

4.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   

5.
We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.  相似文献   

6.
The zwf gene encoding glucose 6-phosphate dehydrogenase (G6PD, EC.1.1.1.49) from Enterococcus mundtii CRL35 was cloned as a 4921 bp EcoRI fragment and analyzed. The predicted zwf gene product consists of 506 residues with a molecular mass of 58.4 kDa, and is fully active in Escherichia coli as demonstrated by its heterologous expression in the zwf-negative mutant E. coli Su294. It shows a high degree of sequence identity (40–60%) to G6PDs described in other bacteria. Upstream of the zwf gene, a homolog of the DtxR family was identified (ORF D). Analysis of the 5′ sequence of ORF D revealed a potential promoter sequence, which would suggest the presence of an operon-like structure between ORF D and the zwf gene. Finally, it was found that Fe2+ levels have an important role as a modulator of G6PD activity. This is the first report of this type of regulation of G6PD activity. A possible involvement in oxidative stress is discussed.  相似文献   

7.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

8.
The distribution of the enzyme activities relating to CoA biosynthesis from pantothenic acid in various microorganisms and the effect of CoA on these activities are described.

High activities of partial reactions involved in CoA biosynthesis were surveyed in various type culture strains involving bacteria, actinomycetes, lactic acid bacteria, molds, and yeasts. Generally, higher activities were found in bacteria. CoA inhibited the phosphorylation of pantothenic acid, and resulted in a decrease of CoA production in all the CoA producing strains, while only a little inhibition by CoA was observed in the other reactions, and CoA production from pantothenic acid 4′-phosphate by Brevibacterium ammoniagenes IFO 12071 was not repressed even in the presence of 4mm of CoA. Extracellular excretion of the enzymes of CoA biosynthesis was observed when cells were in contact with sodium lauryl sulfate. Degrading activity against CoA and that against AMP were relatively lower in CoA producing strains when compared with those in other strains. It was confirmed that Brown’s route of CoA biosynthesis operates in Brevibacterium ammoniagenes IFO 12071.  相似文献   

9.
Tetrahymena pyriformis, strain HSM, do not have glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but contain transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose-5-phosphate 3-epimerase, and ribokinase. The nonoxidative enzymes of the pentose phosphate shunt function in metabolism as indicated by the incorporation of label from [1-14C]ribose into CO2 and glycogen and by the increase in total glycogen content of cultures supplemented with ribose.  相似文献   

10.
Greater production of pantothenic acid 4′-phosphate and pantetheine 4′-phosphate by a microorganism were described. The incubation of pantothenic acid and adenosine 5′-triphosphate with resting cells of Brevibacterium ammoniagenes IFO 12071 gave pantothenic acid-4′-phosphate in a high yield. Cultivation of the organism with pantothenic acid and 5′adenylic acid also gave pantothenic acid 4′-phosphate in a high yield. In a similar fashion pantetheine 4′-phosphate was readily obtained in a good yield. The products were identified chemically and enzymatically.  相似文献   

11.
Improved strains for the production of riboflavin (vitamin B2) were constructed through metabolic engineering using recombinant DNA techniques in Corynebacterium ammoniagenes. A C. ammoniagenes strain harboring a plasmid containing its riboflavin biosynthetic genes accumulated 17-fold as much riboflavin as the host strain. In order to increase the expression of the biosynthetic genes, we isolated DNA fragments that had promoter activities in C. ammoniagenes. When the DNA fragment (P54-6) showing the strongest promoter activity in minimum medium was introduced into the upstream region of the riboflavin biosynthetic genes, the accumulation of riboflavin was 3-fold elevated. In that strain, the activity of guanosine 5′-triphosphate (GTP) cyclohydrolase II, the first enzyme in riboflavin biosynthesis, was 2.4-fold elevated whereas that of riboflavin synthase, the last enzyme in the biosynthesis, was 44.1-fold elevated. Changing the sequence containing the putative ribosome-binding sequence of 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II gene led to higher GTP cyclohydrolase II activity and strong enhancement of riboflavin production. Throughout the strain improvement, the activity of GTP cyclohydrolase II correlated with the productivity of riboflavin. In the highest producer strain, riboflavin was produced at the level of 15.3 g l−1 for 72 h in a 5-l jar fermentor without any end product inhibition. Received: 23 August 1999 / Received revision: 13 October 1999 / Accepted: 5 November 1999  相似文献   

12.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

13.
NMR spectroscopy was used to determine the labeling patterns of the ribose moieties of ribonucleosides purified from Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii labeled with 13C-precursors. In most methanogens tested ribose was labeled in a manner consistent with the operation of the oxidative branch of the pentose phosphate pathway. In contrast, transaldolase and transketolase reactions typical of a partial nonoxidative pentose phosphate pathway are hypothesized to explain the different labeling patterns and enrichments of carbon atoms observed in the ribose moiety of Methanococcus voltae. The source of erythrose 4-phosphate needed for the transaldolase reaction proposed in Methanococcus voltae, and for biosynthesis of aromatic amino acids in methanogenic bacteria in general, was assessed. Phenylalanine carbon atom C-7 was labeled by [1-13C]pyruvate in Methanospirillum hungatei, Methanococcus voltae, and Methanococcus jannaschii, the only methanogens which incorporated sufficient label from pyruvate for testing. Reductive carboxylation of a triose precursor (derived from pyruvate) to synthesize erythrose 4-phosphate is consistent with the labeling patterns observed in phenylalanine and ribose.Abbreviation TCA Tricarboxylic acid Issued as NRCC Publication No. 37382  相似文献   

14.
Transketolase is a key enzyme of the nonoxidative pentose phosphate pathway. The effect of its overexpression on aromatic amino acid production was investigated in Corynebacterium glutamicum, a typical amino-acid-producing organism. For this purpose, the transketolase gene of the organism was cloned on the basis of its ability to complement a C. glutamicum transketolase mutant with pleiotropically shikimic-acid-requiring, ribose- and gluconic-acid-negative phenotype. The gene was shown by deletion mapping and complementation analysis to be located in a 3.2-kb XhoI-SalI fragment of the genome. Amplification of␣the gene by use of low-, middle-, and high-copy-number vectors in a C. glutamicum strain resulted in overexpression of transketolase activities as well as a␣protein of approximately 83kDa in proportion to the copy numbers. Introduction of the plasmids into a tryptophan and lysine co-producer resulted in copy-dependent increases in tryptophan production along with concomitant decreases in lysine production. Furthermore, the presence of the gene in high copy numbers enabled tyrosine, phenylalanine and tryptophan producers to accumulate 5%–20% more aromatic amino acids. These results indicate that overexpressed transketolase activity operates to redirect the glycolytic intermediates toward the nonoxidative pentose phosphate pathway in vivo, thereby increasing the intracellular level of erythrose 4-phosphate, a precursor of aromatic biosynthesis, in the aromatic-amino-acid-producing C. glutamicum strains. Received: 27 July 1998 / Received last revision: 12 October 1998 / Accepted: 24 October 1998  相似文献   

15.
α-Neup5Ac-(2→6)- -GalpNAc, the carbohydrate portion of sialyl–Tn epitope of the tumor-associated carbohydrate antigen, was prepared by a whole-cell reaction through the combination of recombinant Escherichia coli strains and Corynebacterium ammoniagenes. Two recombinant E. coli strains overexpressed the CMP-Neup5Ac biosynthetic genes and the α-(2→6)-sialyltransferase gene of Photobacterium damsela. C. ammoniagenes contributed to the production of UTP from orotic acid. α-Neup5Ac-(2→6)- -GalpNAc was accumulated at 87 mM (45 g/L) after a 25-h reaction starting from orotic acid, N-acetylneuraminic acid, and 2-acetamide-2-deoxy- -galactose.  相似文献   

16.
α-Neup5Ac-(2→6)-d-GalpNAc, the carbohydrate portion of sialyl–Tn epitope of the tumor-associated carbohydrate antigen, was prepared by a whole-cell reaction through the combination of recombinant Escherichia coli strains and Corynebacterium ammoniagenes. Two recombinant E. coli strains overexpressed the CMP-Neup5Ac biosynthetic genes and the α-(2→6)-sialyltransferase gene of Photobacterium damsela. C. ammoniagenes contributed to the production of UTP from orotic acid. α-Neup5Ac-(2→6)-d-GalpNAc was accumulated at 87 mM (45 g/L) after a 25-h reaction starting from orotic acid, N-acetylneuraminic acid, and 2-acetamide-2-deoxy-d-galactose.  相似文献   

17.
18.
19.
The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).  相似文献   

20.
The aim of this study was to express the zwf gene of Synechococcus sp. PCC 7942 in zwf mutant Escherichia coli DF214 cells and to analyse glucose-6-phosphate dehydrogenase (G6PDH) activity. Initially, mutant cells were transformed with plasmid pNUT1 containing a Synechococcus sp. PCC 7942 zwf gene with a 1 kb upstream region that is expected to contain promoter elements. Transformant DF214 cells were not complemented by this fragment in a glucose minimal medium, nor did they exhibit statistically meaningful G6PDH activity. Therefore, the zwf gene was cloned in the lac operon to express the Zwf as a fusion protein; this yielded the construct pSG162. The pSG162 transformant E. coli DF214 cells were complemented in a glucose minimal medium, indicating that cyanobacterial Zwf protein fused with the part of LacZ′ polypeptide, enabling the cells to utilize glucose via the oxidative pentose phosphate pathway. Compared with wild-type E. coli cells, approximately ten times more G6PDH activity was measured in transformant cells. This indicated that the Synechococcus sp. PCC 7942 zwf gene was expressed under the control of the E. coli lac promoter as a fusion protein and the zwf product was converted into an active G6PDH form. Analyses was also carried out to determine whether dithiothreitol (DTT) was an in vitro reducing agent affected the enzyme activity, as was previously reported for this cyanobacterial strain. The results showed no variation in enzyme activity in the reduced assay conditions. Therefore, the zwf mutant E. coli strain DF214 was found to provide a rapid system for analysis of cyanobacterial G6PDH enzymes, but not for the redox state analysis of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号