首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common prokaryotic motility modes are swimming by means of rotating internal or external flagellar filaments or gliding by means of retracting pili. The archaeabacterial flagellar filament differs significantly from the eubacterial flagellum: (1) Its diameter is 10-14 nm, compared to 18-24 nm for eubacterial flagellar filaments. (2) It has 3.3 subunits/turn of a 1.9 nm pitch left-handed helix compared to 5.5 subunits/turn of a 2.6 nm pitch right-handed helix for plain eubacterial flagellar filaments. (3) The archaeabacterial filament is glycosylated, which is uncommon in eubacterial flagella and is believed to be one of the key elements for stabilizing proteins under extreme conditions. (4) The amino acid composition of archaeabacterial flagellin, although highly conserved within the group, seems unrelated to the highly conserved eubacterial flagellins. On the other hand, the archaeabacterial flagellar filament shares some fundamental properties with type IV pili: (1) The hydrophobic N termini are largely homologous with the oligomerization domain of pilin. (2) The flagellin monomers follow a different mode of transport and assembly. They are synthesized as pre-flagellin and have a cleavable signal peptide, like pre-pilin and unlike eubacterial flagellin. (3) The archaeabacterial flagellin, like pilin, is glycosylated. (4) The filament lacks a central channel, consistent with polymerization occurring at the cell-proximal end. (5) The diameter of type IV pili, 6-9 nm, is closer to that of the archaeabacterial filament, 10-14 nm. A large body of data on the biochemistry and molecular biology of archaeabacterial flagella has accumulated in recent years. However, their structure and symmetry is only beginning to unfold. Here, we review the structure of the archaeabacterial flagellar filament in reference to the structures of type IV pili and eubacterial flagellar filaments, with which it shares structural and functional similarities, correspondingly.  相似文献   

2.
The eubacterial flagellar filament is an external, self-assembling, helical polymer approximately 220 A in diameter constructed from a highly conserved monomer, flagellin, which polymerizes externally at the distal end. The archaeal filament is only approximately 100 A in diameter, assembles at the proximal end and is constructed from different, glycosylated flagellins. Although the phenomenology of swimming is similar to that of eubacteria, the symmetry of the archebacterial filament is entirely different. Here, we extend our previous study on the flagellar coiled filament structure of strain R1M1 of Halobacterium salinarum. We use strain M175 of H.salinarum, which forms poly-flagellar bundles at high yield which, under conditions of relatively low ionic-strength (0.8 M versus 5 M) and low pH ( approximately 2.5 versus approximately 6.8), form straight filaments. We demonstrated previously that a single-particle approach to helical reconstruction has many advantages over conventional Fourier-Bessel methods when dealing with variable helical symmetry and heterogeneity. We show here that when this method is applied to the ordered helical structure of the archebacterial uncoiled flagellar filament, significant extensions in resolution can be obtained readily when compared to applying traditional helical techniques. The filament population can be separated into classes of different morphologies, which may represent polymorphic states. Using cryo-negatively stained images, a resolution of approximately 10-15 A has been achieved. Single alpha-helices can be fit into the reconstruction, supporting the proposed similarity of the structure to that of type IV bacterial pili.  相似文献   

3.
Archaea, constituting a third domain of life between Eubacteria and Eukarya, characteristically inhabit extreme environments. They swim by rotating flagellar filaments that are phenomenologically and functionally similar to those of eubacteria. However, biochemical, genetic and structural evidence has pointed to significant differences but even greater similarity to eubacterial type IV pili. Here we determined the three-dimensional symmetry and structure of the flagellar filament of the acidothermophilic archaeabacterium Sulfolobus shibatae B12 using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Processing of the cryo-negatively stained filaments included analysis of their helical symmetry and subsequent single particle reconstruction. Two filament subunit packing arrangements were identified: one has helical symmetry, similar to that of the extreme halophile Halobacterium salinarum, with ten subunits per 5.3 nm repeat and the other has helically arranged stacked disks with C3 symmetry and 12 subunits per repeat. The two structures are related by a slight twist. The S. shibatae filament has a larger diameter compared to that of H. salinarum, at the opposite end of the archaeabacterial phylogenetic spectrum, but the basic three-start symmetry and the size and arrangement of the core domain are conserved and the filament lacks a central channel. This similarity suggests a unique and common underlying symmetry for archaeabacterial flagellar filaments.  相似文献   

4.
The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 310-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 310-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.  相似文献   

5.
Type IV pili are long, flexible filaments that extend from the surface of Gram-negative bacteria and are formed by the polymerization of pilin subunits. This review focuses on the structural information available for each pilin subclass, type IVa and type IVb, highlighting the contributions crystal and nuclear magnetic resonance structures have made in understanding pilus function and assembly. In addition, the type II secretion pseudopilus subunit structure and helical assembly is compared to that of the type IV pilus. The pilin subunits adopt an alphabeta-roll fold formed by the hydrophobic packing of the C-terminal half of a long alpha-helix against an antiparallel beta-sheet. The conserved N-terminal half of the same alpha-helix, as well as two sequence- and structurally-variable regions, protrude from this globular head domain. Filament models have a hydrophobic core formed by the signature long alpha-helices, with variable regions at the filament surface.  相似文献   

6.
Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P''s structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching.  相似文献   

7.
Of the two known "complex" flagellar filaments, those of Pseudomonas are far more flexible than those of Rhizobium. Their diameter is larger and their outer three-start ridges and grooves are more prominent. Although the symmetry of both complex filaments is similar, the polymer's linear mass density and the flagellin molecular mass of the latter are lower. A recent comparison of a three-dimensional reconstruction of the filament of Pseudomonas rhodos to that of Rhizobium lupini indicates that the outer flagellin domain (D3) is missing in R.lupini. Here, we concentrate on the structure of the inner core of the filament of P.rhodos using field emission cryo-negative staining electron microscopy and a hybrid helical/single particle reconstruction technique. Averaging 158 filaments caused the density band corresponding to the radial spokes to nearly average out due to their variability and inferred flexibility. Treating the Z=0 cross-sections through the aligned individual three-dimensional density maps as images, classifying them by correspondence analysis (using a mask containing the radial spokes domain) and re-averaging the subclasses (using helical reconstruction techniques) allowed a recovery of the radial spokes and resolved the alpha-helices in domain D0 and the triple alpha-helical bundles in domain D1 at a resolution of 1/7A(-1). Although the perturbed components of the helical lattice are present along the entire filament's radius, the interior of the complex filament is similar to that of the plain one, whereas it's exterior is altered. Reconstructions of vitrified and cryo-negatively stained plain, right-handed filaments of Salmonella typhimurium SJW1655 prepared and imaged under conditions identical with those used for P.rhodos confirm the similarity of their inner cores and that the secondary structures in the interior of the flagellar filament can, under critical conditions of image recording and correction, be resolved in negative stain.  相似文献   

8.
Characterization of type 1 pili of Salmonella typhimurium LT2.   总被引:20,自引:8,他引:12       下载免费PDF全文
Type 1 pili from Salmonella typhimurium LT2 were purified and characterized. The pilus filaments were 6 nm in diameter and over 1 microns long. Estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the pilin was 21,000. The isoelectric point of the filament was 4.1. Hydrophobic amino acids comprised 40.3% of the total amino acids of the pilin, which contained more proline, serine, and lysine than reported for the type 1 pilin of Escherichia coli. Purified pili agglutinated both horse and chicken erythrocytes and yeast cells but not bovine, sheep, or human erythrocytes. Horse erythrocyte agglutination was inhibited at lower concentrations by alpha-methyl-D-mannoside than by yeast mannane and D-fructose. Agglutination was not affected by D-galactose or sucrose. Results of the present study confirm the role of type 1 pili as Salmonella hemagglutinins and show chemical differences between the type 1 pili of S. typhimurium and E. coli.  相似文献   

9.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

10.
Electron micrographs of negatively stained preparations were used to obtain a three-dimensional reconstruction of the complex flagellar filament of Rhizobium lupini H13-3. The complex filament has an organization similar to that of the more common plain filament, but the subunits are perturbed in a pairwise fashion to generate a very distinctive set of three continuous ridges of density along the outer surface of the filament. In the three-dimensional map, the design of the complex filament is similar to that of the plain filament described in the accompanying paper. The structures consist of 11 segmented rods of density lying at a radius of 65 to 70 A. The exterior surfaces of both kinds of filaments consist of features that protrude from the segmented rods. The interiors of both consist of arms that extend inwards from the rods. In the case of the complex filament, but not of the plain filament, the inner arms interact to generate three tubular features, which, together with the three outer ridges, may account for the more brittle and, by implication, stiffer nature of the complex filament.  相似文献   

11.
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a well-ordered helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments, each in either of the two distinct conformations, L- and R-type, for supercoiling. We have been studying the three-dimensional structures of the flagellar filaments by electron cryomicroscopy and recently obtained a density map of the R-type filament up to 4 angstroms resolution from an image data set containing only about 41,000 molecular images. The density map showed the features of the alpha-helical backbone and some large side chains, which allowed us to build the complete atomic model as one of the first atomic models of macromolecules obtained solely by electron microscopy image analysis (Yonekura et al., 2003a). We briefly review the structure and the structure analysis, and point out essential techniques that have made this analysis possible.  相似文献   

12.
A mutant of Escherichia coli K12 has been found to produce straight flagellar filaments. Electron micrographs of the negatively stained filaments were analysed by optical diffraction and filtering methods. The filament appears to consist of a one-start basic helix with 11 subunits in two turns and with a pitch of 26 Å. One class of the rows of subunits runs closely parallel to the filament axis. We have found that the addition of acridines to the filament suspension induces side-by side aggregation of the filaments. The optical diffraction pattern of the aggregates is similar to that of untreated filaments.Straight filaments were observed to be reconstructed on polymerization of the isolated mutant flagellin in vitro. When the straight-type flagellin copolymerizes with normal-type flagellin, the wave form of the resultant filaments is either normal or heteromorphous. The latter consists of straight and normal-type parts.These results indicate that the straight filament described here is a novel type and differs from that of a mutant of Salmonella with respect to structure (O'Brien & Bennett, 1972) and to the wave form of the copolymer product (Asakura, 1970; Asakura & Iino, 1972).  相似文献   

13.
We obtained a three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus CB15 from electron micrographs of negatively stained preparations. The C. crescentus filament appears, both in negative stain and in the frozen-hydrated state, significantly smoother and narrower than other filaments. Its helical symmetry, and unit cell size, however, are similar to that of other filaments. Although the molecular weight of the C. crescentus flagellin is about half that of other plain flagellins, there is only one monomer per unit cell as indicated by diffraction studies and by linear mass density measurements with the scanning transmission electron microscope. Alignment of the primary amino acid sequences of Salmonella typhimurium (serotype i) and C. crescentus (29,000 Mr) flagellins shows that whereas there is homology at the amino and carboxyterminal ends of the two sequences, the central segment of the S. typhimurium sequence has no homology to that of C. crescentus. A correlated comparison between the three-dimensional reconstructions of the two filaments and primary amino acid sequences of the two flagellins suggests that: (1) the C. crescentus subunit is missing the outer molecular domain but is, otherwise, similar to that of S. typhimurium; (2) the outer molecular domain in S. typhimurium corresponds, therefore, to a central stretch of the primary amino acid sequence; and (3) the outer molecular domain, missing in C. crescentus, is not obligatory for flagellar motility.  相似文献   

14.
In a microscope slide preparation, monomeric flagellins were found to polymerize into flagellar filaments spontaneously, without addition of seeds. Dynamic images of individual growing filaments in a dark-field light microscope were recorded throughout their growth by an ultrasensitive video camera. Each filament had its own unique growth curve. The growth curves consisted of two kinds of discrete phase; namely, the elongation and the rest phase. In the former, a filament elongates at a constant rate, fairly similar among all filaments. In the latter, elongation stops completely. Each filament exists in either of the two phases and alternates between them in a stochastic manner. A mean elongation rate of 89 + 15 nm per minute was obtained at the flagellin concentration of 2 mg/ml, for filaments in the elongation phase.  相似文献   

15.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

16.
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8?M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-? axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.  相似文献   

17.
Type IV pili (T4P) are long, thin, flexible filaments on bacteria that undergo assembly-disassembly from inner membrane pilin subunits and exhibit astonishing multifunctionality. Neisseria gonorrhoeae (gonococcal or GC) T4P are prototypic virulence factors and immune targets for increasingly antibiotic-resistant human pathogens, yet detailed structures are unavailable for any T4P. Here, we determined a detailed experimental GC-T4P structure by quantitative fitting of a 2.3 A full-length pilin crystal structure into a 12.5 A resolution native GC-T4P reconstruction solved by cryo-electron microscopy (cryo-EM) and iterative helical real space reconstruction. Spiraling three-helix bundles form the filament core, anchor the globular heads, and provide strength and flexibility. Protruding hypervariable loops and posttranslational modifications in the globular head shield conserved functional residues in pronounced grooves, creating a surprisingly corrugated pilus surface. These results clarify T4P multifunctionality and assembly-disassembly while suggesting unified assembly mechanisms for T4P, archaeal flagella, and type II secretion system filaments.  相似文献   

18.
Recent advances in the structure and assembly of the archaeal flagellum   总被引:4,自引:0,他引:4  
Archaeal motility occurs through the rotation of flagella that are distinct from the flagella found on bacteria. The differences between the two structures include the multi-flagellin nature of the archaeal filament, the widespread posttranslational modification of the flagellins and the presence of a short signal peptide on each flagellin that is cleaved by a specific signal peptidase prior to the incorporation of the mature flagellin into the flagellar filament. Research has revealed similarities between the archaeal flagellum and the type IV pilus, including the presence of similar unusual signal peptides on the flagellins and pilins, similarities in the amino acid sequences of the major structural proteins themselves, as well as similarities between potential assembly and processing components. The recent suggestion that type IV pili are part of a family of cell surface complexes, coupled with the similarities between type IV pili and archaeal flagella, raise questions about the evolution of these systems and possible inclusion of archaeal flagella into this surface complex family.  相似文献   

19.
Many bacterial pathogens, including Pseudomonas aeruginosa, use type IVa pili (T4aP) for attachment and twitching motility. T4aP are composed primarily of major pilin subunits, which are repeatedly assembled and disassembled to mediate function. A group of pilin-like proteins, the minor pilins FimU and PilVWXE, prime pilus assembly and are incorporated into the pilus. We showed previously that minor pilin PilE depends on the putative priming subcomplex PilVWX and the non-pilin protein PilY1 for incorporation into pili, and that with FimU, PilE may couple the priming subcomplex to the major pilin PilA, allowing for efficient pilus assembly. Here we provide further support for this model, showing interaction of PilE with other minor pilins and the major pilin. A 1.25 Å crystal structure of PilEΔ1–28 shows a typical type IV pilin fold, demonstrating how it may be incorporated into the pilus. Despite limited sequence identity, PilE is structurally similar to Neisseria meningitidis minor pilins PilXNm and PilVNm, recently suggested via characterization of mCherry fusions to modulate pilus assembly from within the periplasm. A P. aeruginosa PilE-mCherry fusion failed to complement twitching motility or piliation of a pilE mutant. However, in a retraction-deficient strain where surface piliation depends solely on PilE, the fusion construct restored some surface piliation. PilE-mCherry was present in sheared surface fractions, suggesting that it was incorporated into pili. Together, these data provide evidence that PilE, the sole P. aeruginosa equivalent of PilXNm and PilVNm, likely connects a priming subcomplex to the major pilin, promoting efficient assembly of T4aP.  相似文献   

20.
Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L‐type or R‐type, having slightly different conformations and inter‐protofilaments interactions. By mixing different ratios of L‐type and R‐type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site‐directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non‐motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right‐handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine’s model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号