首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress in both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in combination with lifelong exercise. Therefore, we investigated whether long-term voluntary wheel running in Fischer 344 rats altered hydrogen peroxide (H2O2) production, antioxidant defenses, and oxidative damage in cardiac SSM and IFM. At 10-11 wk of age, rats were randomly assigned to one of two groups: sedentary and 8% food restriction (sedentary; n = 20) or wheel running and 8% food restriction (runners; n = 20); rats were killed at 24 mo of age. After the age of 6 mo, running activity was maintained at an average of 1,145 +/- 248 m/day. Daily energy expenditure determined by doubly labeled water technique showed that runners expended on average approximately 70% more energy per day than the sedentary rats. Long-term voluntary wheel running significantly reduced H2O2 production from both SSM (-10.0%) and IFM (-9.6%) and increased daily energy expenditure (kJ/day) significantly in runners compared with sedentary controls. Additionally, MnSOD activity was significantly lowered in SSM and IFM from wheel runners, which may reflect a reduction in mitochondrial superoxide production. Activities of the other major antioxidant enzymes (glutathione peroxidase and catalase) and glutathione levels were not altered by wheel running. Despite the reduction in mitochondrial oxidant production, no significant differences in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) were detected between the two groups. The health benefits of chronic exercise may be, at least partially, due to a reduction in mitochondrial oxidant production; however, we could not detect a significant reduction in several selected parameters of oxidative stress.  相似文献   

2.
Previous data have demonstrated that, to handle the oxidative stress encountered with training at high intensity, skeletal muscle relies on an increase in mitochondrial biogenesis, a reduced H(2)O(2) production, and an enhancement of antioxidant enzymes. In the present study, we evaluated the influence of voluntary running on mitochondrial O(2) consumption and H(2)O(2) production by intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) isolated from oxidative muscles in conjunction with the determination of antioxidant capacities. When mitochondria are incubated with succinate as substrate, both maximal (state 3) and resting (state 4) O(2) consumption were significantly lower in SSM than in IFM populations. Mitochondrial H(2)O(2) release per unit of O(2) consumed was 2-fold higher in SSM than in IFM. Inhibition of H(2)O(2) formation by rotenone suggests that complex I of the electron transport chain is likely the major physiological H(2)O(2)-generating system. In Lou/C rats (an inbred strain of rats of Wistar origin), neither O(2) consumption nor H(2)O(2) release by IFM and SSM were affected by long-term, voluntary wheel training. In contrast, glutathione peroxidase and catalase activity were significantly increased despite no change in oxidative capacities with long-term, voluntary exercise. Furthermore, chronic exercise enhanced heat shock protein 72 accumulation within skeletal muscle. It is concluded that the antioxidant status of muscle can be significantly improved by prolonged wheel exercise without necessitating an increase in mitochondrial oxidative capacities.  相似文献   

3.
In heart failure, high‐fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.  相似文献   

4.
Oxidative stress has been implicated as a causal factor in the aging process of the heart and other tissues. To determine the extent of age-related myocardial oxidative stress, oxidant production, antioxidant status, and oxidative DNA damage were measured in hearts of young (2 months) and old (28 months) male Fischer 344 rats. Cardiac myocytes isolated from old rats showed a nearly threefold increase in the rate of oxidant production compared to young rats, as measured by the rates of 2,7-dichlorofluorescin diacetate oxidation. Determination of myocardial antioxidant status revealed a significant twofold decline in the levels of ascorbic acid (P = 0.03), but not alpha-tocopherol. A significant age-related increase (P = 0.05) in steady-state levels of oxidative DNA damage was observed, as monitored by 8-oxo-2'-deoxyguanosine levels. To investigate whether dietary supplementation with (R)-alpha-lipoic acid (LA) was effective at reducing oxidative stress, young and old rats were fed an AIN-93M diet with or without 0.2% (w/w) LA for 2 wk before death. Cardiac myocytes from old, LA-supplemented rats exhibited a markedly lower rate of oxidant production that was no longer significantly different from that in cells from unsupplemented, young rats. Lipoic acid supplementation also restored myocardial ascorbic acid levels and reduced oxidative DNA damage. Our data indicate that the aging rat heart is under increased mitochondrial-induced oxidative stress, which is significantly attenuated by lipoic acid supplementation.  相似文献   

5.
Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.  相似文献   

6.
Oxidative stress has been implicated to play a major role in aging and age-related diseases. In the present study, we investigated the effects of aging on the total antioxidant capacity, uric acid, lipid peroxidation, total sulfhydryl group content and damage to DNA in adult (6 months), old (15 months) and senescent (26 months) male Wistar rats. The antioxidant capacity, determined by phycoerythrin-based TRAP method (total peroxyl radical-trapping potential) was significantly decreased in the plasma and myocardium of old and senescent rats, whereas plasma level of uric acid was elevated in 26-month-old rats. Age-related decline in plasma and heart antioxidant capacity was accompanied by a significant loss in total sulfhydryl group content, increased lipid peroxidation and higher DNA damage in lymphocytes. Correlations between TRAP and oxidative damage to lipids, proteins and DNA suggest that the decline in antioxidant status may play an important role in age-related accumulation of cell damage caused by reactive oxygen species.  相似文献   

7.
The understanding of the involvement of mitochondrial oxidative phosphorylation (OXPHOS) in the aging process has often been biased by the different methodological approaches as well as the choice of the biological material utilized by the various groups. In the present paper, we have carried out a detailed analysis of several bioenergetic parameters and oxidative markers in brain and heart mitochondria from young (2 months) and old (28 months) rats. This analysis has revealed an age-related decrease in respiratory fluxes in brain but not in heart mitochondria. The age-related decrease in respiratory rate (-43%) by NAD-dependent substrates was associated with a consistent decline (-40%) of complex I activity in brain mitochondria. On the other hand, heart mitochondria showed an age-related decline of complex II activity. Both tissues showed, however, an age-associated accumulation of oxidative damage. We have then performed the same analysis on old (28 months) rats subjected to a long-term (16 months) diet containing the antioxidant N-acetylcysteine (NAC). The treated old rats showed a slight brain-specific improvement of mitochondrial energy production efficiency, mostly with NAD-dependent substrates, together with a decrease in carbonyl protein content and an increase in the amount of protein thiols of brain cytosolic fraction. A full recovery of complex II activity was detected in heart mitochondria from NAC-treated old rats. The present work documents the marked tissue specificity of the decline of bioenergetic functions in isolated mitochondria from aged rats and provides the first data on the effects of a long-term treatment with N-acetylcysteine.  相似文献   

8.
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.  相似文献   

9.
Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole.  相似文献   

10.
Diabetic cardiomyopathy is associated with increased risk of heart failure in type 1 diabetic patients. Mitochondrial dysfunction is suggested as an underlying contributor to diabetic cardiomyopathy. Cardiac mitochondria are characterized by subcellular spatial locale, including mitochondria located beneath the sarcolemma, subsarcolemmal mitochondria (SSM), and mitochondria situated between the myofibrils, interfibrillar mitochondria (IFM). The goal of this study was to determine whether type 1 diabetic insult in the heart influences proteomic make-up of spatially distinct mitochondrial subpopulations and to evaluate the role of nuclear encoded mitochondrial protein import. Utilizing multiple proteomic approaches (iTRAQ and two-dimensional-differential in-gel electrophoresis), IFM proteomic make-up was impacted by type 1 diabetes mellitus to a greater extent than SSM, as evidenced by decreased abundance of fatty acid oxidation and electron transport chain proteins. Mitochondrial phosphate carrier and adenine nucleotide translocator, as well as inner membrane translocases, were decreased in the diabetic IFM (P < 0.05 for both). Mitofilin, a protein involved in cristae morphology, was diminished in the diabetic IFM (P < 0.05). Posttranslational modifications, including oxidations and deamidations, were most prevalent in the diabetic IFM. Mitochondrial heat shock protein 70 (mtHsp70) was significantly decreased in diabetic IFM (P < 0.05). Mitochondrial protein import was decreased in the diabetic IFM with no change in the diabetic SSM (P < 0.05). Taken together, these results indicate that mitochondrial proteomic alterations in the type 1 diabetic heart are more pronounced in the IFM. Further, proteomic alterations are associated with nuclear encoded mitochondrial protein import dysfunction and loss of an essential mitochondrial protein import constituent, mtHsp70, implicating this process in the pathogenesis of the diabetic heart.  相似文献   

11.
Mitochondrial-derived oxidative injury contributes to cellular aging as well as to reperfusion-induced tissue damage. While the aging-heart suffers greater tissue damage following ischemia and reperfusion than the adult heart, the occurrence of aging-related alterations in mitochondrial oxidative metabolism in the elderly heart has remained uncertain. We determined if aging altered oxidative metabolism in either of the two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) that reside beneath the plasma membrane or interfibrillar mitochondria (IFM) located between the myofibrils. SSM and IFM were isolated from 6-month adult and 24- and 28-month elderly Fischer 344 rat hearts. Aging-related alterations were limited to IFM, while SSM remained unaffected. Aging decreased the rate of oxidative phosphorylation in IFM, including when stimulated by electron donors specific for cytochrome oxidase. Cytochrome oxidase enzyme activity was decreased in IFM from aging hearts, while activity in SSM remained similar to adult controls. These findings allow future studies of aging-related decrements in oxidative function to focus upon IFM, while SSM provide an inherent control group of mitochondria that are free of aging-related alterations in oxidative function. The selective alteration of IFM during aging raises the possibility that the consequences of aging-induced mitochondrial dysfunction will be enhanced in specific subcellular regions of the senescent myocyte.  相似文献   

12.
Aging is associated with a decline in performance in many organs and loss of physiological performance can be due to free radicals. Mitochondria are incompletely coupled: during oxidative phosphorylation some of the redox energy is dissipated as natural proton leak across the inner membrane. To verify whether proton leak occurs in mitochondria during aging, we measured the mitochondrial respiratory chain activity, membrane potential and proton leak in liver, kidneys and heart of young and old rats. Mitochondria from old rats showed normal rates of Complex I and Complex II respiration. However, they had a lower membrane potential compared to mitochondria from younger rats. In addition, they exhibited an increased rate of proton conductance which partially dissipated the mitochondrial membrane potential when the rate of electron transport was suppressed. This could compromise energy homeostasis in aging cells in conditions that require additional energy supply and could minimize oxidative damage to DNA.  相似文献   

13.
Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.  相似文献   

14.
To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-α-lipoic acid plus acetyl-l-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in Km) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage. Special issue article in honor of Dr. Akitane Mori.  相似文献   

15.
The aging heart sustains greater injury during ischemia and reperfusion compared to adult hearts. Aging decreases oxidative function in interfibrillar mitochondria (IFM) that reside among the myofibers, while subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, remain unaltered. Aging decreases complex III activity selectively in IFM via alteration of the cytochrome c binding site. With 25 min of global ischemia, complex III activity decreases in SSM and further decreases in IFM in the aging heart. Ischemia leads to a marked decrease in the electron paramagnetic resonance signal of the iron-sulfur protein (ISP) in both SSM and IFM, despite a preserved content of ISP peptide. Thus, ischemia results in a functional decrease in the iron-sulfur center in ISP without subunit peptide loss. In the aging heart, at the onset of reperfusion, IFM contain two tandem defects in the path of electron flow through complex III, providing a likely mechanism for enhanced oxidant production and reperfusion damage.  相似文献   

16.

Objective

Cardiac subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial subpopulations possess distinct biochemical properties and differ with respect to their protein and lipid compositions, capacities for respiration and protein synthesis, and sensitivity to metabolic challenge, yet their responsiveness to mitochondrially active cardioprotective therapeutics has not been characterized. This study assessed the differential responsiveness of the two mitochondrial subpopulations to diazoxide, a cardioprotective agent targeting mitochondria.

Methods

Mitochondrial subpopulations were freshly isolated from rat ventricles and their morphologies assessed by electron microscopy and enzymatic activities determined using standard biochemical protocols with a plate reader. Oxidative phosphorylation was assessed from State 3 respiration using succinate as a substrate. Calcium dynamics and the status of Ca2+-dependent mitochondrial permeability transition (MPT) pore and mitochondrial membrane potential were assessed using standard Ca2+ and TPP+ ion-selective electrodes.

Results

Compared to IFM, isolated SSM exhibited a higher sensitivity to Ca2+ overload-mediated inhibition of adenosine triphosphate (ATP) synthesis with decreased ATP production (from 375±25 to 83±15 nmol ATP/min/mg protein in SSM, and from 875±39 to 583±45 nmol ATP/min/mg protein in IFM). In addition, SSM exhibited reduced Ca2+-accumulating capacity as compared to IFM (230±13 vs. 450±46 nmol Ca2+/mg protein in SSM and IFM, respectively), suggestive of increased Ca2+ sensitivity of MPT pore opening. Despite enhanced susceptibility to stress, SSM were more responsive to the protective effect of diazoxide (100 μM) against Ca2+ overload-mediated inhibition of ATP synthesis (67% vs. 2% in SSM and IFM, respectively).

Conclusion

These results provide evidence for the distinct sensitivity of cardiac SSM and IFM toward Ca2+-dependent metabolic stress and the protective effect of diazoxide on mitochondrial energetics.  相似文献   

17.
Aging is accompanied by mitochondrial dysfunction related with lowering of the respiratory complex activity and decrease of ATP synthesis, as well as by an enhancement of oxidative stress and increased sensitivity to mitochondrial permeability transition pore (mPTP) opening in mitochondral triggering the programmed cell death. In the present work we studied the effect of natural antioxidant (melatonin) on parameters of mPTP detected in non-synaptic mitochondria isolated from the brain of young and old rats (3 and 18 months, resp.) with different melatonin treatments; namely, melatonin was either directly applied to the mitochondrial suspension or chronically administered to rats with drinking water. The data obtained have shown that mitochondria isolated from brain of old rats were more susceptive to induction of mPTP. Melatonin added directly to suspension of brain mitochondria isolated from young rats demonstrated a proapoptotic effect. A prolonged chronical treatment with melatonin of old rats produced an anti-apoptotic protective effect. Non-synaptic mitochondria isolated from the brain of old rats treated with melatonin were more resistant to the mPTP opening and demonstrated the activation of respiration of mitochondria as compared to the untreated rats.  相似文献   

18.
Cardiac mitochondrial bioenergetics, oxidative stress, and aging   总被引:2,自引:0,他引:2  
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging. superoxide anion; longevity; postmitotic; calorie restriction; subsarcolemmal, interfibrillar, exercise  相似文献   

19.
Mitochondria in organismal aging and degeneration   总被引:18,自引:0,他引:18  
Several lines of experimentation support the view that the genetic, biochemical and bioenergetic functions of somatic mitochondria deteriorate during normal aging. Deletion mutations of the mitochondrial genome accumulate exponentially with age in nerve and muscle tissue of humans and multiple other species. In muscle, a tissue that undergoes age-related fiber loss and atrophy in humans, there is an exponential rise in the number of cytochrome-oxidase-deficient fibers, which is first detectable in the fourth decile of age. Most biochemical studies of animal mitochondrial activity indicate a decline in electron transport activity with age, as well as decreased bioenergetic capacity with age, as measured by mitochondrial membrane potential. Mitochondrial mutations may be both the result of mitochondrial oxidative stress, and cells bearing pure populations of pathogenic mitochondrial mutations are sensitized to oxidant stress. Oxidant stress to mitochondria is known to induce the mitochondrial permeability transition, which has recently been implicated in the release of cytochrome c and the initiation of apoptosis. Thus several lines of evidence support a contribution of mitochondrial dysfunction to the phenotypic changes associated with aging.  相似文献   

20.
Oxygen free radicals have been hypothesized to play an important role in the aging process. To investigate the correlation between the oxidative stress and aging, we have determined the levels of oxidative protein damage and lipid peroxidation in the brain and liver, and activities of antioxidant enzymes in the brain, liver, heart, kidney, and serum from the Fisher 344 rats at ages of 1, 6, 12, 18, and 24 months. The results showed that the level of oxidative protein damage (measured as carbonyl content) in the brain and liver was significantly higher in older animals than in young animals. No statistical difference was observed in the lipid peroxidation of the liver and brain between young and old animals. The activities of antioxidant enzymes in most tissues displayed an age-dependent decline. Superoxide dismutases in the heart, kidney, and serum, glutathione peroxidase activities in the serum and kidney, and catalase activities in the brain, liver, and kidney, significantly decreased during aging. Cytochrome c oxidase, an enzyme involved in electron transport in mitochondria, initially increased, but subsequently decreased in the aged brain, whereas no significant alteration was observed in the liver mitochondrial antioxidant enzymes. The present studies suggest that the accumulation of oxidized proteins during aging is most likely to be linked with an age-related decline of antioxidant enzyme activities, whereas lipid peroxidation is less sensitive to predict the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号