首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.  相似文献   

2.
3.
4.
5.
Onset of metabolic acidosis leads to a rapid and pronounced increase in expression of phosphoenolpyruvate carboxykinase (PEPCK) in rat renal proximal convoluted tubules. This adaptive response is modeled by treating a clonal line of porcine LLC-PK(1)-F(+) cells with an acidic medium (pH 6.9, 9 mM HCO(3)(-)). Measurement of the half-lives of PEPCK mRNA in cells treated with normal (pH 7.4, 26 mM HCO(3)(-)) and acidic medium established that the observed increase is due in part to stabilization of the PEPCK mRNA. The pH-responsive stabilization was reproduced in a Tet-responsive chimeric reporter mRNA containing the 3'-UTR of PEPCK mRNA. This response was lost by mutation of a highly conserved AU sequence that binds AUF1 and is the primary element that mediates the rapid turnover of PEPCK mRNA. However, siRNA knockdown of AUF1 had little effect on the basal levels and the pH-responsive increases in PEPCK mRNA and protein. Electrophoretic mobility shift assays established that purified recombinant HuR, another AU element binding protein, also binds with high affinity and specificity to multiple sites within the final 92-nucleotides of the 3'-UTR of the PEPCK mRNA, including the highly conserved AU-rich element. siRNA knockdown of HuR caused pronounced decreases in basal expression and the pH-responsive increases in PEPCK mRNA and protein. Therefore, basal expression and the pH-responsive stabilization of PEPCK mRNA in LLC-PK(1)-F(+) cells, and possibly in the renal proximal tubule, may require the remodeling of HuR and AUF1 binding to the elements that mediate the rapid turnover of PEPCK mRNA.  相似文献   

6.
CCAAT/enhancer binding protein (C/EBP) family members are known to transactivate the gene encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) in hepatocytes via promoter proximal C/EBP response elements. PEPCK is also expressed in adipocytes; however, fibroblasts that are homozygous null for C/EBPbeta cannot express PEPCK when induced to differentiate into adipocytes (Tanaka et al., EMBO J. 16, 7432-7443, 1997). This along with our previous observation that an upstream adipocyte-specific enhancer contains multiple putative C/EBP binding elements suggested the possibility that C/EBPbeta transactivates the PEPCK gene in adipocytes via distal elements. We report here that C/EBPbeta transactivates a PEPCK-luciferase chimera in transient transfection assays. C/EBPbeta acted independently of peroxisome proliferator-activated receptor gamma (PPARgamma) which is required for function of the enhancer. C/EBPbeta in nuclear extracts and recombinant C/EBPbeta bound three of the putative C/EBP-binding elements within the enhancer. C/EBPbeta binding to these three elements was strongly cooperative. However, mutation of all three elements did not affect reporter transactivation by C/EBPbeta suggesting that additional elements participate in PEPCK regulation or that the effects of C/EBPbeta are indirect.  相似文献   

7.
Promoter elements important for basal and cyclic AMP (cAMP)-regulated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been identified by analysis of a series of PEPCK promoter mutations in transfection experiments. Fusion genes containing wild-type and mutated PEPCK promoter sequences from -600 to +69 base pairs (bp) fused to the coding sequence for chloramphenicol acetyltransferase were studied. Internal deletion mutations that replaced specific bases with a 10-bp linker within the region from -129 bp to -18 bp of the PEPCK promoter were examined. In addition, wild-type and mutated DNA templates were used as probes in DNase I protection experiments to determine sites of protein-DNA interaction. The PEPCK promoter contains a binding site for nuclear factor 1-CAAT. Deletion of the 5' end of this binding site reduced the size of the DNase I footprint in this region but had no effect on promoter activity. In contrast, deletion or disruption of the 3' end of this binding site completely eliminated protein binding and reduced promoter activity by 50%. Deletion of core sequences of the cAMP regulatory element (CRE) resulted in loss of cAMP responsiveness and an 85% decrease in basal promoter activity, indicating that the CRE also functions as a basal stimulatory element. Mutation of the core sequence of the CRE resulted in loss of the DNase I footprint over the CRE. Internal deletions flanking the CRE showed no loss of induction by cAMP but did have reduced promoter activity. This delimits the CRE to an 18-bp region between nucleotides -100 and -82. Analysis of mutations that disrupted bases between the CRE and the initiation site identified a basal inhibitory element adjacent to a basal stimulatory element, both located just 3' of the CRE, as well as a basal stimulatory element coincident with the TATA consensus sequence centered at -27. These data demonstrate that several cis-acting elements are located within 130 nucleotides of the initiation site of the PEPCK gene and that the CRE is essential for both basal promoter activity and cAMP-regulated expression of this gene.  相似文献   

8.
9.
10.
Use of minigene systems to dissect alternative splicing elements   总被引:4,自引:0,他引:4  
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. The splicing efficiency of individual exons is determined by multiple features involving gene architecture, a variety of cis-acting elements within the exons and flanking introns, and interactions with components of the basal splicing machinery (called the spliceosome) and auxiliary regulatory factors which transiently co-assemble with the spliceosome. Both alternative and constitutive exons are recognized by multiple weak protein:RNA interactions and different exons differ in the interactions which are determinative for exon usage. Alternative exons are often regulated according to cell-specific patterns and regulation is mediated by specific sets of cis-acting elements and trans-acting factors. Transient expression of minigenes is a commonly used in vivo assay to identify the intrinsic features of a gene that control exon usage, identify specific cis-acting elements that control usage of constitutive and alternative exons, identify cis-acting elements that control cell-specific usage of alternative exons, and once regulatory elements have been identified, to identify the trans-acting factors that bind to these elements and modulate splicing. This chapter describes approaches and strategies for using minigenes to define the cis-acting elements that determine splice site usage and to identify and characterize the trans-acting factors that bind to these elements and regulate alternative splicing.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Inhibition of adipocyte triglyceride biosynthesis is required for fatty acid mobilization during inflammation. Triglyceride biosynthesis requires glycerol 3-phosphate and phosphoenolpyruvate carboxykinase (PEPCK) plays a key role. We demonstrate that LPS, zymosan, and TNF-α decrease PEPCK in liver and fat. Turpentine decreases PEPCK in liver, but not in fat. The LPS-induced decrease in PEPCK does not occur in TLR4 deficient animals, indicating that this receptor is required. The LPS-induced decrease in hepatic PEPCK does not occur in TNF receptor/IL-1 receptor knockout mice, but occurs in fat, indicating that TNF-α/IL-1 is essential for the decrease in liver but not fat. In 3T3-L1 adipocytes TNF-α, IL-1, IL-6, and IFNγ inhibit PEPCK indicating that there are multiple pathways by which PEPCK is decreased in adipocytes. The binding of PPARγ and RXRα to the PPARγ response element in the PEPCK promoter is markedly decreased in adipose tissue nuclear extracts from LPS treated animals. Lipopolysaccharide and zymosan reduce PPARγ and RXRα expression in fat, suggesting that a decrease in PPARγ and RXRα accounts for the decrease in PEPCK. Thus, there are multiple cytokine pathways by which inflammation inhibits PEPCK expression in adipose tissue which could contribute to the increased mobilization of fatty acids during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号