首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joint injuries during sporting activities might be reduced by understanding the extent of the dynamic motion of joints prone to injury during maneuvers performed in the field. Because instrumented spatial linkages (ISLs) have been widely used to measure joint motion, it would be useful to extend the functionality of an ISL to measure joint motion in a dynamic environment. The objectives of the work reported by this paper were to (i) design and construct an ISL that will measure dynamic joint motion in a field environment, (ii) calibrate the ISL and quantify its static measurement error, (iii) quantify dynamic measurement error due to external acceleration, and (iv) measure ankle joint complex rotation during snowboarding maneuvers performed on a snow slope. An "elbow-type" ISL was designed to measure ankle joint complex rotation throughout its range (+/-30 deg for flexion/extension, +/-15 deg for internal/external rotation, and +/-15 deg for inversion/eversion). The ISL was calibrated with a custom six degree-of-freedom calibration device generally useful for calibrating ISLs, and static measurement errors of the ISL also were evaluated. Root-mean-squared errors (RMSEs) were 0.59 deg for orientation (1.7% full scale) and 1.00 mm for position (1.7% full scale). A custom dynamic fixture allowed external accelerations (5 g, 0-50 Hz) to be applied to the ISL in each of three linear directions. Maximum measurement deviations due to external acceleration were 0.05 deg in orientation and 0.10 mm in position, which were negligible in comparison to the static errors. The full functionality of the ISL for measuring joint motion in a field environment was demonstrated by measuring rotations of the ankle joint complex during snowboarding maneuvers performed on a snow slope.  相似文献   

2.
The six-revolute-joint instrumented spatial linkage (6R ISL) is often the measurement system of choice for monitoring motion of anatomical joints. However, due to tolerances of the linkage parameters, the system may not be as accurate as desired. A calibration algorithm and associated calibration device have been developed to refine the initial measurements of the ISL's mechanical and electrical parameters so that the measurement of six-degree-of-freedom motion will be most accurate within the workspace of the anatomical joint. The algorithm adjusts the magnitudes of selected linkage parameters to reduce the squared differences between the six known and calculated anatomical position parameters at all the calibration positions. Weighting is permitted so as to obtain a linkage parameter set that is specialized for measuring certain anatomical position parameters. Output of the algorithm includes estimates of the measuring system accuracy. For a particular knee-motion-measuring ISL and calibration device, several interdependent design parameter relationships have been identified. These interdependent relationships are due to the configuration of the ISL and calibration device, the number of calibration positions, and the limited resolution of the devices that monitor the position of the linkage joints. It is shown that if interdependence is not eliminated, then the resulting ISL parameter set will not be accurate in measuring motion outside of the calibration positions, even though these positions are within the ISL workspace.  相似文献   

3.
Measurements of joint angles during motion analysis are subject to error caused by kinematic crosstalk, that is, one joint rotation (e. g., flexion) being interpreted as another (e.g., abduction). Kinematic crosstalk results from the chosen joint coordinate system being misaligned with the axes about which rotations are assumed to occur. The aim of this paper is to demonstrate that measurement of the so-called "screw-home" motion of the human knee, in which axial rotation and extension are coupled, is especially prone to errors due to crosstalk. The motions of two different two-segment mechanical linkages were examined to study the effects of crosstalk. The segments of the first linkage (NSH) were connected by a revolute joint, but the second linkage (SH) incorporated gearing that caused 15 degrees of screw-home rotation to occur with 90 degrees knee flexion. It was found that rotating the flexion axis (inducing crosstalk) could make linkage NSH appear to exhibit a screw-home motion and that a different rotation of the flexion axis could make linkage SH apparently exhibit pure flexion. These findings suggest that the measurement of screw-home rotation may be strongly influenced by errors in the location of the flexion axis. The magnitudes of these displacements of the flexion axis were consistent with the inter-observer variability seen when five experienced observers defined the flexion axis by palpating the medial and lateral femoral epicondyles. Care should be taken when interpreting small internal-external rotations and abduction-adduction angles to ensure that they are not the products of kinematic crosstalk.  相似文献   

4.
The locations of the joint axes of the ankle complex vary considerably between subjects, yet no noninvasive method with demonstrated accuracy exists for locating these axes. The moments of muscle and ground reaction forces about the joint axes are dependent on axis locations, making knowledge of these locations critical to accurate musculoskeletal modeling of the foot and ankle. The accuracy of a computational optimization method that fits a two-revolute model to measured motion was assessed using computer-generated data, a two-revolute mechanical linkage, and three lower-leg cadaver specimens. Motions were applied to cadaver specimens under axial load while bone-mounted markers attached to the tibia, talus, and calcaneus were tracked using a video-based motion analysis system. Estimates of the talocrural and subtalar axis locations were computed from motions of the calcaneus relative to the tibia using the optimization method. These axes were compared to mean helical axes computed directly from tibia, talus, and calcaneus motions. The optimization method performed well when the motions were computer-generated or measured in the mechanical linkage, with angular differences between optimization and mean helical axes ranging from 1 deg to 5 deg. In the cadaver specimens, however, these differences exceeded 20 deg. Optimization methods that locate the anatomical joint axes of the ankle complex by fitting two revolute joints to measured tibia-calcaneus motions may be limited because of problems arising from non-revolute behavior.  相似文献   

5.
Reproduction of the in vivo motions of joints has become possible with improvements in robot technology and in vivo measuring techniques. A motion analysis system has been used to measure the motions of the tibia and femur of the ovine stifle joint during normal gait. These in vivo motions are then reproduced with a parallel robot. To ensure that the motion of the joint is accurately reproduced and that the resulting data are reliable, the testing frame, the data acquisition system, and the effects of limitations of the testing platform need to be considered. Of the latter, the stiffness of the robot and the ability of the control system to process sequential points on the path of motion in a timely fashion for repeatable path accuracy are of particular importance. Use of the system developed will lead to a better understanding of the mechanical environment of joints and ligaments in vivo.  相似文献   

6.
7.
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging.  相似文献   

8.
Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these designs depend on today''s land covers, which will be altered by climate change. We recently proposed an alternative approach based on land facets (recurring landscape units of relatively uniform topography and soils). The rationale is that corridors with high continuity of individual land facets will facilitate movement of species associated with each facet today and in the future. Conservation practitioners might like to know whether a linkage design based on land facets is likely to provide continuity of modeled breeding habitat for species needing connectivity today, and whether a linkage for focal species provides continuity and interspersion of land facets. To address these questions, we compared linkages designed for focal species and land facets in three landscapes in Arizona, USA. We used two variables to measure linkage utility, namely distances between patches of modeled breeding habitat for 5–16 focal species in each linkage, and resistance profiles for focal species and land facets between patches connected by the linkage. Compared to focal species designs, linkage designs based on land facets provided as much or more modeled habitat connectivity for 25 of 28 species-landscape combinations, failing only for the three species with the most narrowly distributed habitat. Compared to land facets designs, focal species linkages provided lower connectivity for about half the land facets in two landscapes. In areas where a focal species approach to linkage design is not possible, our results suggest that conservation practitioners may be able to implement a land facets approach with some confidence that the linkage design would serve most potential focal species. In areas where focal species designs are possible, we recommend using the land facet approach to complement, rather than replace, focal species approaches.  相似文献   

9.
Magnetic-inertial measurement units (MIMUs) are often used to measure the joint angles between two body segments. To obtain anatomically meaningful joint angles, each MIMU must be computationally aligned (i.e., calibrated) with the anatomical rotation axes. In this paper, a novel four-step functional calibration method is presented for the elbow joint, which relies on a two-degrees-of-freedom elbow model. In each step, subjects are asked to perform a simple task involving either one-dimensional motions around some anatomical axes or a static posture. The proposed method was implemented on a fully portable wearable system, which, after calibration, was capable of estimating the elbow joint angles in real time. Fifteen subjects participated in a multi-session experiment that was designed to assess accuracy, repeatability and robustness of the proposed method. When compared against an optical motion capture system (OMCS), the proposed wearable system showed an accuracy of about 4° along each degree of freedom. The proposed calibration method was tested against different MIMU mountings, multiple repetitions and non-strict observance of the calibration protocol and proved to be robust against these factors. Compared to previous works, the proposed method does not require the wearer to maintain specific arm postures while performing the calibration motions, and therefore it is more robust and better suited for real-world applications.  相似文献   

10.
This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematicmodel.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research.The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditionsthat maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motionof the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degreesof freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model issimulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko’smotion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combinationof closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground.The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three othergaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.Theresult can be used in biomimetic robot design and motion planning.  相似文献   

11.
The motions of individual intervertebral joints can affect spine motion, injury risk, deterioration, pain, treatment strategies, and clinical outcomes. Since standard kinematic methods do not provide precise time-course details about individual vertebrae and intervertebral motions, information that could be useful for scientific advancement and clinical assessment, we developed an iterative template matching algorithm to obtain this data from videofluoroscopy images. To assess the bias of our approach, vertebrae in an intact porcine spine were tracked and compared to the motions of high-contrast markers. To estimate precision under clinical conditions, motions of three human cervical spines were tracked independently ten times and vertebral and intervertebral motions associated with individual trials were compared to corresponding averages. Both tests produced errors in intervertebral angular and shear displacements no greater than 0.4° and 0.055 mm, respectively. When applied to two patient cases, aberrant intervertebral motions in the cervical spine were typically found to correlate with patient-specific anatomical features such as disc height loss and osteophytes. The case studies suggest that intervertebral kinematic time-course data could have value in clinical assessments, lead to broader understanding of how specific anatomical features influence joint motions, and in due course inform clinical treatments.  相似文献   

12.
13.
This study presents a free-fall mechanical supination sprain simulator for evaluating the ankle joint kinematics during a simulated ankle supination sprain injury. The device allows the foot to be in an anatomical position before the sudden motion, and also allows different degrees of supination, or a combination of inversion and plantarflexion. Five subjects performed simulated supination sprain trials in five different supination angles. Ankle motion was captured by a motion analysis system, and the ankle kinematics were reported in plantarflexion/dorsiflexion, inversion/eversion and internal/external rotation planes. Results showed that all sprain motions were not pure single-plane motions but were accompanied by motion in other two planes, therefore, different degrees of supination were achieved. The presented sprain simulator allows a more comprehensive study of the kinematics of ankle sprain when compared with some previous laboratory research designs.  相似文献   

14.
The purpose of this study was to develop and evaluate an alternative method for determining the position of the anterior superior iliac spine (ASIS) during cycling. The approach used in this study employed an instrumented spatial linkage (ISL) system to determine the position of the ASIS in the parasagittal plane. A two-segment ISL constructed using aluminum segments, bearings, and digital encoders was tested statically against a calibration plate and dynamically against a video-based motion capture system. Four well-trained cyclists provided data at three pedaling rates. Statically, the ISL had a mean horizontal error of 0.03 +/- 0.21 mm and a mean vertical error of -0.13 +/- 0.59 mm. Compared with the video-based motion capture system, the agreement of the location of the ASIS had a mean error of 0.30 +/- 0.55 mm for the horizontal dimension and -0.27 +/- 0.60 mm for the vertical dimension. The ISL system is a cost-effective, accurate, and valid measure for two-dimensional kinematic data within a range of motion typical for cycling.  相似文献   

15.
With continued development and improvement of tissue engineering therapies for small articular lesions, increased attention is being focused on the challenge of engineering partial or whole synovial joints. Joint-scale constructs could have applications in the treatment of large areas of articular damage or in biological arthroplasty of severely degenerate joints. This review considers the roles of shape, loading and motion in synovial joint mechanobiology and their incorporation into the design, fabrication, and testing of engineered partial or whole joints. Incidence of degeneration, degree of impairment, and efficacy of current treatments are critical factors in choosing a target for joint bioengineering. The form and function of native joints may guide the design of engineered joint-scale constructs with respect to size, shape, and maturity. Fabrication challenges for joint-scale engineering include controlling chemo-mechano-biological microenvironments to promote the development and growth of multiple tissues with integrated interfaces or lubricated surfaces into anatomical shapes, and developing joint-scale bioreactors which nurture and stimulate the tissue with loading and motion. Finally, evaluation of load-bearing and tribological properties can range from tissue to joint scale and can focus on biological structure at present or after adaptation.  相似文献   

16.
Feline animals can run quickly using spinal joints as well as the joints that make up their four legs.This paper describes the development of a quadruped robot including a spinal joint that biomimics feline animals.The developed robot platform consists of four legs with a double 4-bar linkage type and one simplified rotary joint.In addition,Q-learning,a type of machine learning,was used to find the optimal motion profile of the spinal joint.The bounding gait was implemented on the robot system using the motion profile of the spinal joint,and it was confirmed that using the spinal joint can achieve a faster Center of Mass(CoM)forward speed than not using the spinal joint.Although the motion profile obtained through Q-learning did not exactly match the spinal angle of a feline animal,which is more multiarticular than that of the developed robot,the tendency of the actual feline animal spinal motion profile,which is sinusoidal,was similar.  相似文献   

17.
Kuo LC  Su FC  Chiu HY  Yu CY 《Journal of biomechanics》2002,35(11):1499-1506
While several different methods have been used to measure hand kinematics, fluoroscopy is generally considered to be the most accurate. Recently, video-based motion analysis has been developed for the measurement of joint kinematics. This method is versatile, easy to use, and can measure motions dynamically. Surface markers are most commonly used in the video-based motion systems. However, whether the surface markers placed on the thumb accurately represent the true kinematics of the underlying bony segment is questionable.In this study, the feasibility of surface markers to represent thumb kinematics was investigated by fluoroscopy. Both the positions of surface markers and bony landmarks were simultaneous recorded and then digitized. The Ra(2) values comparing the angular changes of the thumb interphalangeal, metacarpal and carpometacarpal joints derived using the surface markers or bony landmarks were 0.9986, 0.9730 and 0.9186 in the flexion/extension plane respectively, 0.8837, 0.9697 and 0.8775 in the abduction/adduction plane; and 0.9884, 0.9643 and 0.9431 in the opposition plane. The ranges, mean and standard deviation of the absolute differences between calculated angles of different marker sets were also compared. These data revealed that the similarities of the two different marker techniques throughout the motion cycle were high. The differences between the two methods were also within clinically allowable range of +/-5 degrees. It is concluded that the application of the video-based motion analysis system with surface markers to thumb kinematics is warranted.  相似文献   

18.
Obtaining accurate values of joint tissue loads in human subjects and animals in vivo requires exact 3D-reproduction of joint kinematics and comparisons of in vivo motions between subjects and animals, and also necessitates an accurate reference position. For the knee, passive flexion-extension of isolated joints by hand has been assumed to produce bony motions similar to those of normal gait. We hypothesized that passive flexion-extension kinematics would not accurately reproduce in vivo gait, and, further, that such kinematics would vary significantly between testers. In vivo gait motions of four ovine stifle joints were measured in six degrees of freedom, as were passive flexion-extension motions after sacrifice. Passive flexion-extension motions were performed by three testers on the same stifle joints used in vitro. Results showed statistically significant differences in all degrees of freedom, with the largest differences in the proximal-distal and internal-external directions. Differences induced by muscle loads and kinetic factors in vivo were most evident during stance and hoof-off phases of gait. The in vitro passive paths generated by hand created motions with large variability both between and within individual testers. The user dependence and "area" of motion of passive flexion-extension indicates that passive flexion-extension is contained in a volume of motion, rather than constrained to a unique path. The assumption that the passive path has relevance to precise bone positions during normal in vivo gait is not supported by these results. Thus, using passive flexion-extension as a reference between joints may introduce large motion variability in the observed outcome, and large potential errors in determining joint tissue loads.  相似文献   

19.
Ying N  Kim W 《Journal of biomechanics》2002,35(12):146-1657
This paper presents a modified Euler angles method, dual Euler angles approach, to describe general spatial human joint motions. In dual Euler angles approach, the three-dimensional joint motion is considered as three successive screw motions with respect to the axes of the moving segment coordinate system; accordingly, the screw motion displacements are represented by dual Euler angles. The algorithm for calculating dual Euler angles from coordinates of markers on the moving segment is also provided in this study. As an example, the proposed method is applied to describe motions of ankle joint complex during dorsiflexion–plantarflexion. A Flock of Birds electromagnetic tracking device (FOB) was used to measure joint motion in vivo. Preliminary accuracy tests on a gimbal structure demonstrate that the mean errors of dual Euler angles evaluated by using source data from FOB are less than 1° for rotations and 1 mm for translations, respectively. Based on the pilot study, FOB is feasible for quantifying human joint motions using dual Euler angles approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号