首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Current biology : CB》2022,32(8):1675-1688.e7
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

3.
Whole genome sequencing of several metazoan model organisms provides a platform for studying genome evolution. How representative are the genomes of these model organisms for their respective phyla? Within nematodes, for example, the free-living soil nematode Caenorhabditis elegans is a highly derived species with unusual genomic characters, such as a reduced Hox cluster (Curr. Biol., 13, 37–40) and the absence of a Hedgehog signaling system. Here, we describe the recent loss of a DNA methyltransferase-2 gene (dnmt-2) in C.elegans. A dnmt-2-like gene is present in the satellite model organism Pristionchus pacificus, another free-living nematode that diverged from C.elegans 200–300 million years ago. In contrast, C.elegans, Caenorhabditis briggsae and P.pacificus all contain an mbd-2-like gene, which encodes another essential component of the methylation system of higher animals and fungi. Cel-mbd-2 is expressed throughout development and RNA interference (RNAi) experiments result in variable phenotypes. In contrast, Cbr-mbd-2 RNAi results in paralyzed larval or adult worms suggesting recent changes of gene function within the genus Caenorhabditis. We speculate that both genes were part of an ancestral DNA methylation system in nematodes and that gene loss and sequence divergence have abolished DNA methylation in C.elegans.  相似文献   

4.
Bacterial pathogens have shaped the evolution and survival of organisms throughout history, but little is known about the evolution of virulence mechanisms and the counteracting defence strategies of host species. The nematode model organisms, Caenorhabditis elegans and Pristionchus pacificus, feed on a wealth of bacteria in their natural soil environment, some of which can cause mortality. Previously, we have shown that these nematodes differ in their susceptibility to a range of human and insect pathogenic bacteria, with P. pacificus showing extreme resistance compared with C. elegans. Here, we isolated 400 strains of Bacillus from soil samples and fed their spores to both nematodes. Spores of six Bacillus strains were found to kill C. elegans but not P. pacificus. While the majority of Bacillus strains are benign to nematodes, observed pathogenicity is restricted to either the spore or the vegetative stage. We used the rapid C. elegans killer strain (Bacillus sp. 142) to conduct a screen for hypersusceptible P. pacificus mutants. Two P. pacificus mutants with severe muscle defects and an extended defecation cycle that die rapidly on Bacillus spores were isolated. These genes were identified to be homologous to C. elegans, unc-22 and unc-13. To test whether a similar relationship between defecation and bacterial pathogenesis exists in C. elegans, we used five known defecation mutants. Quantification of the defecation cycle in mutants also revealed a severe effect on survival in C. elegans. Thus, intestinal peristalsis is critical to nematode health and contributes significantly to survival when fed Gram-positive bacteria.  相似文献   

5.
Hermaphroditism has evolved several times independently in nematodes. The model organism Caenorhabditis elegans and Pristionchus pacificus are self-fertile hermaphrodites with rare facultative males. Both species are members of different families: C. elegans belongs to the Rhabditidae and P. pacificus to the Diplogastridae. Also, both species differ in their ecology: C. elegans is a soil-dwelling nematode that is often found in compost heaps. In contrast, field studies in Europe and North America indicate that Pristionchus nematodes are closely associated with scarab beetles. In C. elegans, several recent studies have found low genetic diversity and rare out-crossing events. Little is known about diversity levels and population structure in free-living hermaphroditic nematodes outside the genus Caenorhabditis. Taking a comparative approach, we analyse patterns of molecular diversity and linkage disequilibrium in 18 strains of P. pacificus from eight countries and four continents. Mitochondrial sequence data of P. pacificus isolates reveal a substantially higher genetic diversity on a global scale when compared to C. elegans. A mitochondrial-derived hermaphrodite phylogeny shows little geographic structuring, indicating several worldwide dispersal events. Amplified fragment length polymorphism and single strand conformation polymorphism analyses demonstrate a high degree of genome-wide linkage disequilibrium, which also extends to the mitochondrial genome. Together, these findings indicate distinct patterns of genetic variation of the two species. The low level of genetic diversity observed in C. elegans might reflect a recent human-associated dispersal, whereas the P. pacificus diversity might reflect a long-lasting and ongoing insect association. Thus, despite similar lifestyle characteristics in the laboratory, the reproductive mode of hermaphroditism with rare facultative males can result in distinct genetic variability patterns in different ecological settings.  相似文献   

6.
The main food source of free‐living nematodes in the soil environment is bacteria, which can affect nematode development, fecundity and survival. In order to occupy a reliable source of bacterial food, some nematodes have formed specific relationships with an array of invertebrate hosts (where bacteria proliferate once the hosts dies), thus forming a tritrophic system of nematode, bacteria and insect or other invertebrates. We isolated 768 Bacillus strains from soil (from Germany and the UK), horse dung and dung beetles and fed them to the genetically tractable free‐living nematodes Caenorhabditis elegans and Pristionchus pacificus to isolate nematocidal strains. While C. elegans is a bacteriovorous soil nematode, P. pacificus is an omnivorous worm that is often found in association with scarab beetles. We found 20 Bacillus strains (consisting of B. cereus, B. weihenstephanensis, B. mycoides and Bacillus sp.) that were pathogenic to C. elegans and P. pacificus causing 70% to 100% mortality over 5 days and significantly affect development and brood size. The most pathogenic strains are three B. cereus‐like strains isolated from dung beetles, which exhibit extreme virulence to C. elegans in less than 24 h, but P. pacificus remains resistant. C. elegans Bre mutants were also highly susceptible to the B. cereus‐like strains indicating that their toxins use a different virulence mechanism than B. thuringiensis Cry 5B toxin. Also, mutations in the daf‐2/daf‐16 insulin signaling pathway do not rescue survival. We profiled the toxin genes (bcet, nhe complex, hbl complex, pcpl, sph, cytK, piplc, hly2, hly3, entFM and entS) of these three B. cereus‐like strains and showed presence of most toxin genes but absence of the hbl complex. Taken together, this study shows that the majority of naturally isolated Bacillus from soil, horse dung and Geotrupes beetles are benign to both C. elegans and P. pacificus. Among 20 pathogenic strains with distinct virulence patterns against the two nematodes, we selected three B. cereus‐like strains to investigate resistance and susceptibility immune responses in nematodes.  相似文献   

7.
The nematode Pristionchus pacificus (Diplogastridae) has been described as a satellite organism for a functional comparative approach to the model organism Caenorhabditis elegans because genetic, molecular, and cell-biological tools can be used in a similar way in both species. Here we show that P. pacificus has three juvenile stages, instead of the usual four found in other nematodes. Embryogenesis is lengthened and many developmental events that take place during the first juvenile stage in C. elegans occur during late embryogenesis in P. pacificus. Video imaging and transmission electron microscopy revealed no embryonic moult. The timing of later developmental events relative to the moults differs between P. pacificus and C. elegans. In addition, the post-embryonic blast-cell divisions display a specific change in timing between the two species, resulting in heterochrony between different cell lineages, such as vulval and gonadal lineages. Developmental events appear to come into register during the last larval stage. Thus, differences in developmental timing between P. pacificus and C. elegans represent a deep heterochronic change. We designate the three juvenile stages of P. pacificus as J1 to J3. Comparison with other species of the family Diplogastridae indicates that this pattern represents an apomorphic character for the monophylum Diplogastridae.  相似文献   

8.
Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Réunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism.  相似文献   

9.
In the nematode Caenorhabditis elegans, up to 15% of the genes are organized in operons. Polycistronic precursor RNAs are processed by trans-splicing at the 5' ends of genes by adding a specific trans-spliced leader. Ten different spliced leaders are known in C. elegans that differ in sequence and abundance. The SL1 leader is most abundant and is spliced to the 5' ends of monocistronic genes and to upstream genes in operons. Trans-splicing is common among nematodes and was observed in the genera Panagrellus, Ascaris, Haemonchus, Anisakis, and Brugia. However, little is known about operons in nonrhabditid nematodes. Dolichorhabditis CEW1, another rhabditid nematode that is now called Oscheius CEW1, contains operons and SL2 trans-splicing. We have studied the presence of operons and trans-splicing in Pristionchus pacificus, a species of the Diplogastridae that has recently been developed as a satellite organism in evolutionary developmental biology. We provide evidence that P. pacificus contains operons and that downstream genes are trans-spliced to SL2. Surprisingly, the one operon analyzed so far in P. pacificus is not conserved in C. elegans, suggesting unexpected genomic plasticity.  相似文献   

10.
We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C. elegans ncRNAs. Most of these signals are located in introns or at a distance from known protein-coding genes. With an estimated false positive rate of about 50% and a sensitivity on the order of 50%, we estimate that the nematode genomes contain between 3,000 and 4,000 RNAs with evolutionary conserved secondary structures. Only a small fraction of these belongs to the known RNA classes, including tRNAs, snoRNAs, snRNAs, or microRNAs. A relatively small class of ncRNA candidates is associated with previously observed RNA-specific upstream elements.  相似文献   

11.
Shaham S 《PloS one》2007,2(11):e1117
In genetic screens, the number of mutagenized gametes examined is an important parameter for evaluating screen progress, the number of genes of a given mutable phenotype, gene size, cost, and labor. Since genetic screens often entail examination of thousands or tens of thousands of animals, strategies for optimizing genetics screens are important for minimizing effort while maximizing the number of mutagenized gametes examined. To date, such strategies have not been described for genetic screens in the nematode Caenorhabditis elegans. Here we review general principles of genetic screens in C. elegans, and use a modified binomial strategy to obtain a general expression for the number of mutagenized gametes examined in a genetic screen. We use this expression to calculate optimal screening parameters for a large range of genetic screen types. In addition, we developed a simple online genetic-screen-optimization tool that can be used independently of this paper. Our results demonstrate that choosing the optimal F2-to-F1 screening ratio can significantly improve screen efficiency.  相似文献   

12.
Guiliano DB  Hall N  Jones SJ  Clark LN  Corton CH  Barrell BG  Blaxter ML 《Genome biology》2002,3(10):research0057.1-research005714

Background  

Comparisons between the genomes of the closely related nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal high rates of rearrangement, with a bias towards within-chromosome events. To assess whether this pattern is true of nematodes in general, we have used genome sequence to compare two nematode species that last shared a common ancestor approximately 300 million years ago: the model C. elegans and the filarial parasite Brugia malayi.  相似文献   

13.
Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariners half-life (the time by which half an elements sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome. When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois.  相似文献   

14.
The nematode Pristionchus pacificus is of growing interest as a model organism in evolutionary biology. However, despite multiple studies of its genetics, developmental cues, and ecology, the basic life-history traits (LHTs) of P. pacificus remain unknown. In this study, we used the hanging drop method to follow P. pacificus at the individual level and thereby quantify its LHTs. This approach allowed direct comparisons with the LHTs of Caenorhabditis elegans recently determined using this method. When provided with 5×109 Escherichia coli cells ml–1 at 20°C, the intrinsic rate of natural increase of P. pacificus was 1.125 (individually, per day); mean net production was 115 juveniles produced during the life-time of each individual, and each nematode laid an average of 270 eggs (both fertile and unfertile). The mean age of P. pacificus individuals at first reproduction was 65 h, and the average life span was 22 days. The life cycle of P. pacificus is therefore slightly longer than that of C. elegans, with a longer average life span and hatching time and the production of fewer progeny.  相似文献   

15.
The Caenorhabditis elegans vulva is induced by a member of the epidermal growth factor (EGF) family that is expressed in the gonadal anchor cell, representing a prime example of signaling processes in animal development. Comparative studies indicated that vulva induction has changed rapidly during evolution. However, nothing was known about the molecular mechanisms underlying these differences. By analyzing deletion mutants in five Wnt pathway genes, we show that Wnt signaling induces vulva formation in Pristionchus pacificus. A Ppa-bar-1/beta-catenin deletion is completely vulvaless. Several Wnt ligands and receptors act redundantly in vulva induction, and Ppa-egl-20/Wnt; Ppa-mom-2/Wnt; Ppa-lin-18/Ryk triple mutants are strongly vulvaless. Wnt ligands are differentially expressed in the somatic gonad, the anchor cell, and the posterior body region, respectively. In contrast, previous studies indicated that Ppa-lin-17, one of the Frizzled-type receptors, has a negative role in vulva formation. We found that mutations in Ppa-bar-1 and Ppa-egl-20 suppress the phenotype of Ppa-lin-17. Thus, an unexpected complexity of Wnt signaling is involved in vulva induction and vulva repression in P. pacificus. This study provides the first molecular identification of the inductive vulva signal in a nematode other than Caenorhabditis.  相似文献   

16.
Evolutionary reconstruction of the natural history of an organism ultimately requires knowledge about the development, population genetics, ecology, and phylogeny of the species. Such investigations would benefit from studies of mutational processes because mutations are the source of natural variation. The nematode Pristionchus pacificus has been developed as a model organism in evolutionary biology by comparing its development with Caenorhabditis elegans. Pristionchus pacificus and related species are associated with scarab beetles, and their ecology and phylogeny are well known. More than 200 P. pacificus isolates from all over the world are available for this cosmopolitan species. We generated mutation accumulation (MA) lines in P. pacificus to study spontaneous mutation rates in the mitochondrial genome and compared mutation rate estimates with natural variation between nine representative isolates of the species. The P. pacificus mitochondrial genome is 15,955 bp in length and is typical for nematodes. Pristionchus pacificus has all known mitochondrial genes and contains an unusual suppressor transfer RNA (tRNA) for the codon UAA. This has most likely influenced the spectrum of observable mutations because 6 of 12 mutations found in the 82 MA lines analyzed are nonsense mutations that can be suppressed by the suppressor tRNA. The overall mutation rate in P. pacificus is 7.6 × 10?? per site per generation and is less than one order of magnitude different from estimates in C. elegans and Drosophila. Using this mutation rate estimate in a comparison of the mitochondrial genome of nine P. pacificus isolates, we calculate the minimum time to the most recent common ancestor at 10?-10? generations. The combination of mutation rate analysis with intraspecific divergence provides a powerful tool for the reconstruction of the natural history of P. pacificus, and we discuss the ecological implication of these findings.  相似文献   

17.
To understand the evolution of developmental processes, nonmodel organisms in the nematodes, insects, and vertebrates are compared with established model systems. Often, these comparisons suffer from the inability to apply sophisticated technologies to these nonmodel species. In the nematode Pristionchus pacificus, cellular and genetic analyses are used to compare vulva development to that of Caenorhabditis elegans. However, substantial changes in gene function between P. pacificus and C. elegans limit the use of candidate gene approaches in studying P. pacificus mutations. To facilitate map-based cloning of mutations in P. pacificus, we constructed a BAC-based genetic linkage map. A BAC library of 13,440 clones was generated and completely end sequenced. By comparing BAC end and EST sequences between the "wild-type" strain P. pacificus var. California and the polymorphic strain P. pacificus var. Washington, 133 single-stranded conformational polymorphisms were identified. These markers were tested on a meiotic mapping panel of 46 randomly picked F(2) animals after a cross of the two strains, providing the first genetic linkage map of P. pacificus. A mapping strategy using two selected markers per chromosome was devised and the efficiency of this approach was illustrated by the mapping of the Ppa-unc-1/Twitchin gene.  相似文献   

18.
Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the human condition.  相似文献   

19.
20.
Maglich JM  Sluder A  Guan X  Shi Y  McKee DD  Carrick K  Kamdar K  Willson TM  Moore JT 《Genome biology》2001,2(8):research0029.1-research00297

Background

The availability of complete genome sequences enables all the members of a gene family to be identified without limitations imposed by temporal, spatial or quantitative aspects of mRNA expression. Using the nearly completed human genome sequence, we combined in silico and experimental approaches to define the complete human nuclear receptor (NR) set. This information was used to carry out a comparative genomic study of the NR superfamily.

Results

Our analysis of the human genome identified two novel NR sequences. Both these contained stop codons within the coding regions, indicating that both are pseudogenes. One (HNF4 γ-related) contained no introns and expressed no detectable mRNA, whereas the other (FXR-related) produced mRNA at relatively high levels in testis. If translated, the latter is predicted to encode a short, non-functional protein. Our analysis indicates that there are fewer than 50 functional human NRs, dramatically fewer than in Caenorhabditis elegans and about twice as many as in Drosophila. Using the complete human NR set we made comparisons with the NR sets of C. elegans and Drosophila. Searches for the >200 NRs unique to C. elegans revealed no human homologs. The comparative analysis also revealed a Drosophila member of NR subfamily NR3, confirming an ancient metazoan origin for this subfamily.

Conclusions

This work provides the basis for new insights into the evolution and functional relationships of NR superfamily members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号