首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵丽雯  赵文智  吉喜斌 《生态学报》2015,35(4):1114-1123
利用中国生态系统研究网络临泽内陆河流域研究站绿洲农田2009年小气候、湍流交换、土壤蒸发和叶片气孔导度等综合观测试验数据,应用Shuttleworth-Wallace(S-W)双源模型以半小时为步长估算了绿洲农田玉米生长季实际蒸散量,并利用涡动相关与微型蒸渗仪实测数据对田间蒸散发量和棵间土壤蒸发量计算结果进行了检验。结果表明:S-W模型较好地估算研究区的蒸散量,并能有效区分农田作物蒸腾和土壤蒸发;全生育期玉米共耗水640 mm,其中作物蒸腾累积量为467 mm,土壤蒸发累积量为173 mm,分别占总量的72.9%和27.1%;日时间尺度上,作物蒸腾和土壤蒸发分别在0—6.3 mm/d和0—4.3 mm/d之间变化,其日平均分别为2.9和1.0 mm/d;田间供水充足,作物蒸腾与土壤蒸发比值明显受作物生长过程影响,播种—出苗期、出苗—拔节期、拔节—抽雄期、抽雄—灌浆期、灌浆—成熟期,其比值分别为0.04、0.8、7.0、5.2和1.4,不同阶段的比值差异主要受叶面积指数影响。  相似文献   

2.
Interception of precipitation by fruit litter is a poorly understood component of the hydrologic cycle in forested ecosystems. Even less well understood is the effect of meteorological conditions on the evaporation of precipitation intercepted by forest litter. This study sought to examine the influence of meteorological conditions on the evaporation of intercepted precipitation by fruit litter from Liquidambar styraciflua L. (sweetgum) by deriving and calibrating a regression model to estimate evaporation from the fruit litter that may be of potential use to forest and watershed managers. Data on evaporative losses from the fruit litter used to derive and calibrate the statistical model were acquired through a larger field experiment conducted from mid November 2002 through April 2003. Results from the forward stepwise least squares multiple regression model demonstrated that evaporative losses from the fruit litter were estimated with a high degree of accuracy based on the amount of water stored, solar radiation inputs, and vapor pressure deficit (adjusted R2=0.836, F=82.28, P<0.00001). The amount of water stored in the fruit litter explained the highest proportion of variance in the regression model. Storm to storm comparisons also highlighted the importance of solar radiation and wind speed in determining evaporation from the fruit litter. The regression model potentially may be used in conjunction with a canopy interception model to predict interception losses from L. styraciflua dominated forests and plantations.  相似文献   

3.
The development of the profile is mainly the consequence of movement of water in the soil and we may distinguish the following three possibilities:

Firstly under humid condition there is an excess of rainfall over evaporation. Thus, there is a general tendency of downward movement of soil moisture and the soil is subjected to a leaching process, whereby the constituents are carried downwards and are either deposited in the lower horizons or completely removed in drainage water.

Secondly, under arid conditions with an excess of potential evaporation over rainfall, rain moistens the soil to a limited depth. After cessation of rain, the soil moisture rises again to the surface under the influence of evaporation with the result that translocation occurs in both directions, and in final stages of dessication, the deposition of salts from solution may occur throughout an appreciable depth of surface soil.

Thirdly, downward movement may be prevented by the presence of ground water, or the occurrence of impervious sub-soil layer. In such cases water movement can only occur laterally over the horizon of impedence. The impedence may not be complete, but intermediate stages can also be observed.

The development of alkali soil profile is governed either by the second or third or by the combination of both the processes mentioned above.

In India, saline soils, saline-alkali soils and alkali soils are commonly distributed. Leached soils are of very rare occurrence.  相似文献   

4.
The effects of irrigation and fertiliser regimes on N leaching from the production of couch grass (Cynodon dactylon L.) sod, on a free-draining sandy soil, were evaluated in a 22-month field study. The experimental design used a randomised-block, split-plot design with three replicates. Main plots consisted of two irrigation treatments: 70 and 140% daily replacement of pan evaporation; four subplot fertiliser types (water-soluble (predominately NH4NO3), control-release, pelletised poultry manure and pelletised biosolids); and three N application rates (100, 200 and 300 kg N ha−1 per crop). Nitrogen leaching was assessed by measuring the leachate volumes and concentrations of N species leached from soil lysimeters (250 mm in diameter by 950 mm in length) installed in 10 m2 turfgrass plots. Nitrogen leaching ranged from 33 to 167 kg N ha−1 over 22 months, depending upon the irrigation and fertiliser treatment. Irrigation treatment affected N leaching more than fertiliser treatment, and increasing the irrigation from 70 to 140% replacement of daily pan evaporation increased N leaching for all fertiliser types, and by up to four times. Forty six to 76% of losses occurred from the high irrigation treatments during the first 16 weeks after the turfgrass was planted as rhizomes. By contrast, N leaching did not appear to increase following harvest of sod. At the high irrigation treatment, N leaching was greater for the pelletised biosolids than the control-release; while at the low irrigation treatment, N leaching did not vary between fertiliser types. A significant proportion of the N leached was in the organic form. Therefore, we recommend total N and mineral N be measured when assessing N leaching from turfgrass. Nitrogen leaching from turfgrass production is low from all fertiliser types when the irrigation matches turfgrass water use and N is applied at a rate and frequency that approximates turfgrass requirements. Section Editor: P. J. Randall  相似文献   

5.
Spatial and temporal progress of anthracnose caused by Colletotrichum gloeosporioides in quantitatively resistant accessions of the tropical pasture legume Stylosanthes scabra were studied in a field experiment at the Southedge Research Station, Queensland, Australia. In a previously published work a conditional ordinal logistic regression model was developed to explain the probability of a plant developing a given disease severity level, depending on its previous disease state and that of its neighbours. In the present study this model is augmented to incorporate the effects of three weather variables which were measured daily during a growing season. Two approaches were used: (a) threshold values for relative humidity (RH), rainfall and net evaporation were used to classify days as suitable or unsuitable for anthracnose growth; (b) days were assumed to vary continuously in their rate of anthracnose growth depending on the numerical values of the weather variables. High 9am RH, low net evaporation and low 9am temperatures are significantly associated with anthracnose growth. Net evaporation proved to be a better index than rainfall and heavy rainfall was not conducive to high levels of anthracnose; however, rainfall was useful once evaporation was taken into account. The effect of 9am RH can be described either by a threshold value around 70% or by a quadratic function. A two-variable model with net evaporation and log(rain+1) explains 97.6% of the available deviance.  相似文献   

6.
Martins PM  Rocha F  Damas AM 《PloS one》2008,3(4):e1998

Background

Vapor diffusion is the most widely used technique for protein crystallization and the rate of water evaporation plays a key role on the quality of the crystals. Attempts have been made in the past to solve the mass transfer problem governing the evaporation process, either analytically or by employing numerical methods. Despite these efforts, the methods used for protein crystallization remain based on trial and error techniques rather than on fundamental principles.

Methodology/Principal Findings

Here we present a new theoretical model which describes the hanging drop method as a function of the different variables that are known to influence the evaporation process. The model is extensively tested against experimental data published by other authors and considering different crystallizing conditions. Aspects responsible for the discrepancies between the existing theories and the measured evaporation kinetics are especially discussed; they include the characterization of vapor-liquid equilibrium, the role of mass transfer within the evaporating droplet, and the influence of the droplet-reservoir distance.

Conclusions/Significance

The validation tests show that the proposed model can be used to predict the water evaporation rates under a wide range of experimental conditions used in the hanging drop vapor-diffusion method, with no parameter fitting or computational requirements. This model combined with protein solubility data is expected to become a useful tool for a priori screening of crystallization conditions.  相似文献   

7.
【目的】土壤重金属污染问题日益受到关注,其中钒污染逐渐成为研究热点。淋洗是土壤修复的重要手段,但存在污染大、成本高的缺点。生物淋洗技术因其经济高效且环保的特点能够应用于土壤的修复,但其对钒污染土壤的修复,认识仍非常有限。【方法】本研究采用嗜酸性氧化亚铁硫杆菌对钒污染土壤进行了生物淋洗试验,通过影响因素试验探究了钒的最佳浸出条件,并应用扫描电子显微镜-能量色散X射线谱分析了钒在淋洗过程中的变化,最后对代谢产物进行了解析。【结果】微生物次生代谢产物能促进土壤中钒的溶出。氧化亚铁硫杆菌对土壤钒的浸出效率较高,生物淋洗20 d后土壤中钒的浸出率达到27.4%,进一步的影响因素试验表明,在固体浓度为3%、接种体积为10%、初始pH值为1.8、初始Fe2+的浓度为3.0 g/L的条件下,土壤中钒的浸出效果最佳。SEM-EDS分析证实生物淋洗后土壤中钒含量减少,其中以非残渣态形式存在的钒更容易被浸出。代谢组学分析显示氧化亚铁硫杆菌在浸出过程中产生了大量代谢产物来应对重金属胁迫。【结论】生物淋洗技术能够有效地实现土壤钒污染的修复,本研究为钒污染土壤提供了一种环境友好的修复方式。  相似文献   

8.
This paper presents a model of water flux and throughfall concentrations of K+ and NH 4 + in a subalpine balsam fir forest. The model is based on a multi-layer submodel of hydrologic flow. Cloud water deposition and evaporation are incorporated as separate submodels. Chemical exchange is parameterized with diffusion resistances and internal foliar concentrations determined from leaching experiments on isolated canopy components. The model is tested against within-storm throughfall measurements and found to agree reasonably well in most instances. Some specific departures from observed data are noted, of which some can be explained. Differences between observed and modeled concentrations of K+ early in the storm events suggest that pre-storm conditions, which were not modeled, are important in controlling the chemical exchange.Responses of throughfall chemistry to changes in rain rate, rain concentration, and stand surface area index (SAI) were investigated by simulation with the model. Increasing rain rates increased leaching of K+ and uptake of NH 4 + . Increasing concentrations of K+ in rain decreased slightly the amount of K+ leached, but increasing concentration of NH 4 + in rain increased NH 4 + uptake proportionately. Increasing canopy SAI increased the leaching of K+ and the uptake of NH 4 + , with the pattern of the increase dependent on rain rate.  相似文献   

9.
Summary The leaching activity of five batches of Thiobacillus ferrooxidans, strain F26-77, cultivated under various conditions, towards elemental sulphur, ferrous ions, pyrite, covellite, chalcopyrite and sphalerite was studied. The activities of sulphite oxidase, thiosulphate oxidase and rhodanese were determined in crude, cell-free bacterial extracts. The effectiveness of leaching was directly correlated with the enzymic activity of the cultures. The results suggest that the activities of the enzymes metabolizing sulphur and its inorganic compounds in Thiobacillus ferrooxidans, or bacterial leaching activity on sulphur and sulphides, rather than the rate of oxidation of ferrous ions, should be taken as the criterion of usefulness for the leaching of sulphide minerals.  相似文献   

10.
Organic acids that are excreted by microorganisms dissolve nickel from lateritic ores. In chemical leaching experiments, fifteen organic acids were tested in the concentration range of 0.05–0.5 M. The most effective were hydroxycarboxylic acids. The leaching of nickel is dependent on the type of mineralization. With completely limonitized ore, no mobilization occurred, while up to 90% of the nickel was extracted from silicate-bearing laterites by 0.5 M citric acid. In biological leaching tests, Penicillium was found to be the most effective microorganism. After improvement of the leaching conditions, up to 70% of the nickel was extracted at considerably lower citric acid concentrations than with the chemical leaching process. Generally, leaching of nickel from lateritic ores with heterotrophic microorganisms is possible and seems to be promising. Possibilities for future investigations are discussed.  相似文献   

11.
Temperature profoundly affects the rate and trajectory of embryonic development, and thermal extremes can be fatal. In viviparous species, maternal behaviour and physiology can buffer the embryo from thermal fluctuations; but in oviparous animals (like most reptiles and all birds), an embryo is likely to encounter unpredictable periods when incubation temperatures are unfavourable. Thus, we might expect natural selection to have favoured traits that enable embryos to maintain development despite those fluctuations. Our review of recent research identifies three main routes that embryos use in this way. Extreme temperatures (i) can be avoided (e.g. by accelerating hatching, by moving within the egg, by cooling the egg by enhanced rates of evaporation, or by hysteresis in rates of heating versus cooling); (ii) can be tolerated (e.g. by entering diapause, by producing heat‐shock proteins, or by changing oxygen use); or (iii) the embryo can adjust its physiology and/or developmental trajectory in ways that reduce the fitness penalties of unfavourable thermal conditions (e.g. by acclimating, by exploiting brief windows of favourable conditions, or by producing the hatchling phenotype best suited to those incubation conditions). Embryos are not simply passive victims of ambient conditions. Like free‐living stages of the life cycle, embryos exhibit behavioural and physiological plasticity that enables them to deal with unpredictable abiotic challenges.  相似文献   

12.
Mercury evaporation from undisturbed iron‐humus podzol lysimeters was measured over 3 months after treatment with HgCl2 spiked with radioactive 203Hg. The relative evaporation rate from HgCl2 treated soils followed the sum of two exponential functions. Because evaporation asymptotically approaches zero with time, the integral of the fit curve represents the evaporative loss in percent of atmospheric deposition. For the soil investigated, about 5% of atmospheric Hg deposition was reemitted into the atmosphere. It is hypothesized that mercury evaporation can decrease the leaching of mercury in and from soil significantly; this effect is probably increasing with decreasing rain acidity or soil acidity. Mercury deposited as soluble salt remains susceptible to reemission to air for 300 d after incorporation into the soil matrix. Indications are found that Hg evaporation from soils in geological background areas predominantly derives from recent atmospheric Hg deposition and not from geological sources.  相似文献   

13.
The effect of N supply on the quality of Calliandra calothyrsus and Gliricidia sepium prunings was studied in a glasshouse over a 7-month growing period. Increasing the concentration of N supplied from 0.625 to 10.0 mM NO3-N resulted in increased N concentration but decreased polyphenol concentration, protein-binding capacity and C:N ratio of prunings from both species. Lignin concentration was not consistently altered by the N treatment. Mineralization of N from the prunings was measured over a 14-week period under controlled leaching and non-leaching conditions. The results indicated a strong interaction between legume species and concentration of N supply in their influence on N mineralization of the prunings applied to the soil. Differences in the %N mineralized were dictated by the quality of the prunings. The (lignin + polyphenol):N ratio was the pruning quality factor which could be used most consistently and accurately to predict N mineralization of the legume prunings incubated under leaching conditions, and the relationship was best described by a linear regression. Under non-leaching conditions, however, the protein-binding capacity appeared to be the most important parameter in determining the patterns of N release from the prunings studied. The relationship between the N mineralization rate constant and the protein-binding capacity was best described by a negative exponential function, y=0.078 exp(–0.0083x). The present study also indicated that the release of N from legume prunings containing a relatively high amount of polyphenol could be enhanced by governing the N availability conditions under which the plant is grown, for example whether or not it is actively fixing nitrogen. Estimates of pruning N mineralization after 14 weeks with the difference method averaged 6% (leaching conditions) and 22% (nonleaching conditions) more than with the 15N method for all legume prunings studied. The recovery of pruning by maize (4–38%) was well correlated with the % pruning N mineralized suggesting that incubation data closely reflect the pruning N value for a given catch crop under non-leaching conditions.  相似文献   

14.
During bacterial oxidation of the arsenopyrite that contaminated a chalcopyrite concentrate, the bioextraction of arsenic from the concentrate was examined. A long-term constant As(III) concentration, representing a large portion of the total arsenic, occurred in the leaching medium. As(III) was not further oxidized, either under bioextraction conditions or by Fe(III) in the presence of the mesophilic bacterium Thiobacillus ferooxidans. These results are discussed in relation to the influence of leaching microorganisms on the form of arsenic in the solution. Dissolved As(III) could be reversed into a solid phase by adsorption of As(III) by forming an iron precipitate. Correspondence to: M. Mandl  相似文献   

15.
Water consumption related to the life cycle of metals is seldom reported, even though mines are often situated in very dry regions. In this study we quantified the life cycle consumption of groundwater and fresh surface water (blue water footprint [WFblue]) for the extraction and production of high‐grade copper refined from both a copper sulfide ore and a copper oxide ore in the Atacama Desert of northern Chile. Where possible, we used company‐specific data. The processes for extracting copper from the two types of ore are quite different from each other, and the WFblue of the sulfide ore refining process is 2.4 times higher than that of the oxide ore refining process (i.e., 96 cubic meters per metric ton [tonne] of copper versus 40 cubic meters per tonne of copper). Most of the water consumption (59% of WFblue) in the sulfide ore process occurred at the concentrator plant, via seepage, accumulation, and also by evaporation. In the oxide ore process, the main user of water is the heap‐leaching process, with 45% of WFblue. The crushing and agglomeration operations, electrowinning cells, and solution pools are also significant contributors to the total consumption of water in the oxide ore process. Most of the water consumed in the oxide ore process was lost to evaporation. The WFblue of the oxide ore process can be reduced by preventing water evaporation and using more sophisticated devices during irrigation of the leaching heaps. The WFblue of the sulfide ore refining process can be reduced by improving water recovery (i.e., reducing seepage, accumulation, and evaporation) from the tailings dam at the concentrator plant. Using seawater in the production of copper is also a promising option to reduce the WFblue by up to 62%.  相似文献   

16.
Nitrogen catch crops are grown to absorb nitrogen from the rooting zone during autumn and winter. The uptake of N (Nupt) from the soil inorganic N pool (Nmin) to a pool of catch crop nitrogen, will protect the nitrogen against leaching. After incorporation, a fraction (m) of the catch crop nitrogen is mineralized and becomes available again. However, not all available nitrogen present in the soil in the autumn is lost by leaching during winter. A fraction (r) of the nitrogen absorbed by the catch crop would, without a catch crop, have been retained within the rooting zone. The first year nitrogen beneficial effect (Neff) of a catch crop may then be expressed b N eff = m*N upt - r* N upt The soil-plant simulation model DAISY was evaluated for its ability to simulate the effects of catch crops on spring Nmin and Neff. Based on incubation studies, parameter values were assigned to a number of catch crop materials, and these parameter values were then used to simulate spring Nmin. The model was able to predict much of the vairiation in the measured spring Nmin (r2 = 0.48***) and there was good agreement between the measured and the simulated effect of winter precipitation on spring Nmin and Neff.Scenarios including variable soil and climate conditions, and variable root depth of the succeeding crop were simulated. It is illustrated that the effect of catch crops on nitrogen availability for the succeeding crop depends strongly on the rooting depth of the succeeding crop. If the succeeding crop is deep rooted and the leaching intensity is low, there is a high risk that a catch crop will have a negative effect on nitrogen availability. The simulations showed that the strategy for the growing of catch crops should be adapted to the actual situation, especially to the expected leaching intensity and to the rooting depth of the succeeding crop.  相似文献   

17.
Management of riparian vegetation is difficult because these communities are frequently impacted by herbivores, invasive weeds, and altered hydrologic regimes. Multiple and intertwined factors affecting rare species recruitment are particularly difficult to identify. Gaura neomexicana ssp. coloradensis Munz (Gaura) is a short‐lived perennial forb endemic to riparian areas in mixed‐grass prairies of Wyoming, Nebraska, and Colorado, U.S.A. It became a federally listed threatened species in October 2000. Because the species is a recruitment‐limited monocarpic perennial, we studied the effects of six capsule‐collection dates, a 2‐month cool‐moist stratification, 24‐hr leaching, and 24‐hr imbibition on Gaura seedling emergence. Seedling emergence did not vary with collection date. Capsules collected from Gaura plants grown at the Bridger Plant Materials Center in Montana exhibited greater emergence than capsules harvested from endemic populations near Cheyenne, Wyoming, suggesting that maternal plant growing conditions impact dormancy. Because cool‐moist stratification enhanced seedling emergence of Gaura and leaching did not, sufficient moisture during cool temperatures may be more critical than leaching of germination inhibitors as might occur with normal stream flows. Spring flooding may enhance Gaura recruitment by increasing the availability of riparian sites that are inundated during periods of cool temperatures. If so, hydrologic and climatic regimes must be considered in restoring the unique conditions needed for germination of this rare riparian endemic.  相似文献   

18.
The microbiological leaching of a chalcopyrite concentrate has been investigated using a pure strain of Thiobacillus ferrooxidans. The optimum leaching conditions regarding pH, temperature, and pulp density were found to be 2.3, 35°C, and 22%, respectively. The energy of activation was calculated to be 16.7 kcal/mol. During these experiments the maximum rate of copper dissolution was about 215 mg/liters/hr and the final copper concentration was as high as 55 g/liter. This latter value is in the range of copper concentrations which may be used for direct electrorecovery of copper. Jarosite formation was observed during the leaching of the chalcopyrite concentrate. When the leach residue was reground to expose new substrate surface, subsequent leaching resulted in copper extractions up to about 80%. On the basis of this experimental work, a flow sheet has been proposed for commercial scale biohydrometallurgical treatment of high-grade chalcopyrite materials.  相似文献   

19.
Summary Some copper-leaching microorganisms were isolated from weathered rock material of old copper deposits. Among these the strain Bacillus sp. L 1 was able to solubilize completely the copper contained in low-grade ore material under optimal conditions. The most suitable leaching solution was sulphite waste liquor from the paper industry. Decreasing effectiveness of metal recovery was observed with increasing particle size and increasing solid-liquid ratio. In silver leaching, a maximum was measured after 3 days followed by a rapid decrease. Possible technical uses of leaching processes are discussed. Offprint requests to: G. Straube  相似文献   

20.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号