首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellobiophrya conviva clasps tentacles of the bryozoan Bugula neritina with a ring-like structure formed from aboral extensions of its body that taper into two slender arms. The tips of the arms overlap and join to form a unique organelle, the bouton. Each arm contains a massive myoneme that splays out at the bouton. The bouton consists of the cupped tips of the arms and a cavity, which is filled with dense homogeneous material. Long digitations containing longitudinal microtubules at their periphery project from the inner surface of the tip of each arm into the cavity. Deep folds of pellicle with pores opening into their depths line the wall of the cavity. Conventional kinetosomes are not visible in the bouton, but circular or elliptical arrays of microtubules are found at the bases of digitations. The nonfunctional scopula of the adult is in a depression enclosed by pellicular folds. The bouton is distant from the scopula, but its fine structure somewhat resembles it, supporting Chatton and Lwoff's hypothesis that the cinctal arms carry parts of the scopula at their tips. The fine structure of the cinctum supports their suggestion that the cinctal arms are homologous to the spasmonemes of vorticellid peritrichs.  相似文献   

2.
ABSTRACT. A species of peritrich that attaches to gills of the skate, Raja erinacea , was identified by its original describer as a member of Caliperia , a genus characterized by having a noncontractile skeletal rod within the arms of its cinctum and by not having the cinctal arms bonded to one another at their tips. Our observations of the living ciliates confirmed by protargol impregnation and electron microscopy revealed that their cinctal arms are linked by a bouton and that the cytoskeletal structure within them has the fine structure of a myoneme. These characteristics place this peritrich unequivocally in the genus Ellobiophrya and it is thus renamed Ellobiophrya brevipes (Laird, 1959) n. comb. Clumps of epithelial cells clasped by the cincta of E. brevipes show damage at their bases but not on their luminal surfaces. The known species of Ellobiophrya are compared for significant structural differences that separate species of this genus.  相似文献   

3.
The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the ODA-DC were used to analyze its state of association with outer arm components within the cytoplasm, and its localization in the axonemes of oda mutants. Immunoprecipitation indicates that DC83 and DC62 are preassembled within the cytoplasm, but that they are not associated with outer arm dynein. Both proteins are lost or greatly diminished in oda1 and oda3, mutants in the structural genes of DC62 and DC83, respectively, demonstrating that their association is necessary for their stable presence in the cytoplasm. Immunoelectron microscopy indicates that DC83 repeats at 24-nm intervals along the length of the doublet microtubules of oda6, which lacks outer arms; thus, outer arm periodicity may be determined by the ODA-DC. Flagellar regeneration and temporary dikaryon experiments indicate that the ODA-DC can be rapidly transported into the flagellum and assembled on the doublet microtubules independently of the outer arms and independently of flagellar growth. Unexpectedly, the intensity of ODA-DC labeling decreased toward the distal ends of axonemes of oda6 but not wild-type cells, suggesting that the outer arms reciprocally contribute to the assembly/stability of the ODA-DC.  相似文献   

4.
To produce oscillatory bending movement in cilia and flagella, the activity of dynein arms must be regulated. The central-pair microtubules, located at the centre of the axoneme, are often thought to be involved in the regulation, but this has not been demonstrated definitively. In order to determine whether the central-pair apparatus are directly involved in the regulation of the dynein arm activity, we analyzed the movement of singlet microtubules that were brought into contact with dynein arms on bundles of doublets obtained by sliding disintegration of elastase-treated flagellar axonemes. An advantage of this new assay system was that we could distinguish the bundles that contained the central pair apparatus from those that did not, the former being clearly thicker than the latter. We found that microtubule sliding occurred along both the thinner and the thicker bundles, but its velocity differed between the two kinds of bundles in an ATP concentration dependent manner. At high ATP concentrations, such as 0.1 and 1 mM, the sliding velocity on the thinner bundles was significantly higher than that on the thicker bundles, while at lower ATP concentrations the sliding velocity did not change between the thinner and the thicker bundles. We observed similar bundle width-related differences in sliding velocity after removal of the outer arms. These results provide first evidence suggesting that the central pair and its associated structures may directly regulate the activity of the inner (and probably also the outer) arm dynein.  相似文献   

5.
P. J. Herring    P. N. Dilly    Celia  Cope 《Journal of Zoology》1992,227(3):479-491
The oceanic squid Octopoteuthis danue Joubin has one type of photophore on the head, body and arms, but another type on the eight arm tips. The first type has acomplexcapillary network, with elastic walls and a thick reflector. The arm tip organs have no such capillary core but a dense matrix containing paracrystalline assemblies.
Taningia danae Joubin (the only other genus in the family Octopoteuthidae) has only two large arm tip photophores. These are similar in their general organization to the arm tip photophores of Octopoteuthis , but their detailed structure is quite different.
There has evidently been independent evolution of photophores in this family of squids.  相似文献   

6.
Glass-adsorbed intact sea urchin outer arm dynein and its beta/IC1 subunit supports movement of microtubules, yet does not form a rigor complex upon depletion of ATP (16). We show here that rigor is a feature of the isolated intact outer arm, and that this property subfractionates with its alpha heavy chain. Intact dynein mediates the formation of ATP-sensitive microtubule bundles, as does the purified alpha heavy chain, indicating that both particles are capable of binding to microtubules in an ATP-sensitive manner. In contrast, the beta/IC1 subunit does not bundle microtubules. Bundles formed with intact dynein are composed of ribbon-like sheets of parallel microtubules that are separated by 54 nm (center-to-center) and display the same longitudinal repeat (24 nm) and cross-sectional geometry of dynein arms as do outer doublets in situ. Bundles formed by the alpha heavy chain are composed of microtubules with a center-to-center spacing of 43 nm and display infrequent, fine crossbridges. In contrast to the bridges formed by the intact arm, the links formed by the alpha subunit are irregularly spaced, suggesting that binding of the alpha heavy chain to the microtubules is not cooperative. Cosedimentation studies showed that: (a) some of the intact dynein binds in an ATP-dependent manner and some binds in an ATP-independent manner; (b) the beta/IC1 subunit does not cosediment with microtubules under any conditions; and (c) the alpha heavy chain cosediments with microtubules in the absence or presence of MgATP2-. These results suggest that the structural binding observed in the intact arm also is a property of its alpha heavy chain. We conclude that whereas force-generation is a function of the beta/IC1 subunit, both structural and ATP-sensitive (rigor) binding of the arm to the microtubule are mediated by the alpha subunit.  相似文献   

7.
The peritrichous ciliate, Scyphidia ubiquita Hirshfield has been recorded on the west coast of Wales from the mantle cavity of snails belonging to the genus Littorina. The ultrastructure is similar to that described for specimens from the Pacific coast of the United States, but the scopula lacks a pellicular crest. Scyphidia acanthophora sp.n. from the mantle cavity of the top shells, Gibbula umbilicalis (da Costa) and Monodonta lineata (da Costa) is described on the basis of light, surface and transmission electron microscopy. It is distinguished from other scyphidians principally by the general body shape, form of the macronucleus and the ultrastructure of the scopula disc. Comparisons are made between this species and S. ubiquita particularly with respect to the ultrastructure of the scopula and the mode of attachment to the host.  相似文献   

8.
《The Journal of cell biology》1986,103(4):1547-1555
The cellular mechanisms used to direct translocating organelles are poorly understood. It is believed that the intrinsic structural polarity of microtubules may play a role in this process. We have examined the effects that differently oriented microtubules have upon the direction of pigment transport in surgically severed melanophore arms. In a previous paper (McNiven, M. A., M. Wang, and K. R. Porter, 1984, Cell, 37:753-765) we reported that after isolation, arms repolarized and reoriented their microtubules outward from their centers as if to form new "microcells." Pigment aggregation in these arms was toward a new focal point located at the arm centers. In this study we monitored pigment movement in isolated arms containing taxol- stabilized microtubules to test if the reversal in direction of pigment transport is dependent upon the repolarization of microtubules. We report that taxol delays both the microtubule reorientation and reversal in transport direction in a concentration-dependent manner. These and other presented data suggest that the polarity of the microtubule population within a melanophore confers direction on pigment transport.  相似文献   

9.
Cephalodiscus gracilis lives in shallow water around Bermuda. The zooids secrete a transparent coenecium. Several zooids can be attached to a common point. The zooids may be of differing maturity, having from none to five pairs of arms. The mature zooids feed by extending their arms like meridians around a globe with the tentacles of adjacent arms interdigitating to make a spherical filter net. Feeding currents are induced by cilia. The mucus flows along the external surfaces of the arms, around the collar and into the mouth. The rejection current runs on the inside surface of the arms. The rejected material is stored in pellets near the arm tips. It is'flicked'away at intervals.
The larvae are found in densely pigmented stalks attached to the common sucker. The zooids also reproduce by budding.  相似文献   

10.
Interaction of Chlamydomonas dynein with tubulin   总被引:3,自引:0,他引:3  
Studies were conducted to determine if dynein could bind to unpolymerized tubulin. Tubulin alone normally fractionated in the included volume of a molecular sieve Bio-Gel A-1.5m column. Incubated together, tubulin and dynein coeluted in the void volumn, suggesting that a complex had formed between the two. In addition, immunoelectron microscopy revealed preassembled microtubules were labeled with biotin antibody only when incubated in both dynein and biotinylated tubulin, evidence that dynein with bound biotinylated tubulin had decorated the microtubules. A fraction of the tubulin could be dissociated from dynein by addition of ATP and vanadate, as assayed by molecular sieve chromatography followed by densitometry of gels, suggesting that some tubulin bound to the B end of the dynein arm. Additional tubulin dissociated from the dynein under conditions of high salt. These studies, together with those indicating that tubulin blocked the A end of the dynein arm from binding to microtubules and promoted the interaction of two arms at their A ends, provide evidence that the A end of the arm also can bind tubulin. Thus, the tubulin subunits, themselves, on a microtubule rather than a particular surface lattice structure formed by adjacent protofilaments may provide the binding sites for both ends of the dynein arm.  相似文献   

11.
Microtubules at the tip of a resting (non-feeding) tentacle are arranged helically in two concentric tube-shaped arrays. The pitches of the helical paths followed by tubules in the two arrays differ. At the start of feeding these microtubules bend along their longitudinal axes and splay outwards and downwards away from the tentacle tip as it ‘everts’. Tubules in the two arrays slideacross each other as this occurs. Comparison of the fine structure of the tips of feeding and resting tentacles with a dynamic model of the microtubular framework indicates that movement of the tubules is not brought about by active sliding of the tubules against each other or by the action of contractile elements attached along the lengths of tubules. The tips of microtubules forming the inner tube may be pulled downwards by contractile elements in the tentacular pellicle; these tubules apparently push those in. the outer tube to their new positions. The pattern of configurational changes in a tentacle tip at the start of feeding appears to be largely defined by the elastic resistance of the microtubules to bending, and the ways in which tubules are packed and linked together and attached to the pellicle.  相似文献   

12.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

13.
Electron micrographs of both negatively contrasted and thin-sectioned lamellibranch gill cilia reveal several new features of ciliary fine structure, particularly in regard to those structures forming intermittent or permanent crossbridges between microtubules. Negative-contrasting reveals the presence of a 14-5-nm repeating bridge between the central microtubules. Frontal views of negatively contrasted dynein arm rows along subfibre A show that the arms (23-nm repeat) in the outer row are displaced in a left-handed manner by 3-4nm with respect to those in the inner row. This displacement is probably a direct reflexion of the helical tubulin subunit lattice of the subfibre. Interdoublet (nexin) links are seen connecting adjacent A and B subfibres at intervals of 86 nm along the doublet. Negative-contrasting shows thin, highly elastic connexions holding the doublets together. When seen in longitudinal thin sections, the interdoublet links are often tilted to considerable angles, indicating they may have an elastic response to interdoublet sliding.  相似文献   

14.
Organization of microtubules in centrosome-free cytoplasm   总被引:8,自引:4,他引:4       下载免费PDF全文
Many different cell types possess microtubule patterns which appear to be polarized and oriented, in part, by cytoplasmic factors not directly associated with a centrosome. Recently, we demonstrated that cytoplasmic extensions ("arms") of teleost melanophores will reorganize their microtubule population outward from their centers after surgical isolation (McNiven, M. A., M. Wang, and K. R. Porter. 1984. Cell. 37:753-765). In the study reported here, we examine microtubule dynamics within the centrosome-free fragments and find that, after severing, microtubule reorganization is initiated at the proximal (cut) end of an arm and migrates distally with the aggregated pigment mass until it becomes permanently positioned at the middle of the arm. Computer-aided image analysis demonstrates that this middle position is located at the arm centroid, implicating the action of a cytoplasmic gel in this process. Morphological studies of arms devoid of pigment reveal that microtubules do not emanate from a single site or structure within the centroid area, but from a more generalized region. Taken together, these findings suggest that factors distributed throughout cytoplasm participate in microtubule assembly and organization.  相似文献   

15.
The dynein arms of ciliary doublet microtubules cause adjacent axonemal doublets to slide apart with fixed polarity. This suggests that there is a unique mechanochemistry to the dynein arm with unidirectional force generation in all active arms and also that not all arms are active at once during a ciliary beat. Negative stain and thin-section images of arms in axonemes treated with beta, gamma methylene adenosine triphosphate (AMP-PCP) show a consistent subunit construction where the globular head of the arm interacts with subfiber B of doublet N+1. This interpretation differs from that provided by freeze etch and STEM interpretations of in situ arm construction and has implications for the mechanochemical cycle of the arm. A computer model of the arms in relation to other axonemal structures has been constructed to test these interpretations. Attachment of the head of the arm subfiber B is directly demonstrable in splayed axonemes in AMP-PCP. About half of the doublets in an axoneme show such attachments, while half do not. This might imply that about half the doublets in an axoneme are active at any given instant and can be identified as such. This information may be useful in probing questions of how active arms differ biochemically from inactive arms and of how microtubule translocators in general become active.  相似文献   

16.
Drosophila melanogaster macrophages are highly migratory cells that lend themselves beautifully to high resolution in vivo imaging experiments. By expressing fluorescent probes to reveal actin and microtubules, we can observe the dynamic interplay of these two cytoskeletal networks as macrophages migrate and interact with one another within a living organism. We show that before an episode of persistent motility, whether responding to developmental guidance or wound cues, macrophages assemble a polarized array of microtubules that bundle into a compass-like arm that appears to anticipate the direction of migration. Whenever cells collide with one another, their microtubule arms transiently align just before cell–cell repulsion, and we show that forcing depolymerization of microtubules by expression of Spastin leads to their defective polarity and failure to contact inhibit from one another. The same is true in orbit/clasp mutants, indicating a pivotal role for this microtubule-binding protein in the assembly and/or functioning of the microtubule arm during polarized migration and contact repulsion.  相似文献   

17.
Feeding arms carrying coelomic extensions of the theca are thought to be unique to crinoids among stemmed echinoderms. However, a new two-armed echinoderm from the earliest Middle Cambrian of Spain displays a highly unexpected morphology. X-ray microtomographic analysis of its arms shows they are polyplated in their proximal part with a dorsal series of uniserial elements enclosing a large coelomic lumen. Distally, the arm transforms into the more standard biserial structure of a blastozoan brachiole. Phylogenetic analysis demonstrates that this taxon lies basal to rhombiferans as sister-group to pleurocystitid and glyptocystitid blastozoans, drawing those clades deep into the Cambrian. We demonstrate that Cambrian echinoderms show surprising variability in the way their appendages are constructed, and that the appendages of at least some blastozoans arose as direct outgrowths of the body in much the same way as the arms of crinoids.  相似文献   

18.
The secondary structure of the isolated tRNA-like sequence (n=159) present at the 3' OH terminus of turnip yellow mosaic virus RNA has been established from partial nuclease digestion with S1 nuclease and T1, CL3, and Naja oxiana RNases. The fragment folds into a 6-armed structure with two main domains. The first domain, of loose structure and nearest the 5' OH terminus, is composed of one large arm which extends into the coat protein cistron. The second, more compact domain, is composed of the five other arms and most probably contains the structure recognized by valyl-tRNA synthetase. In this domain three successive arms strikingly resemble the T[unk], anticodon, and D arms found in tRNA. Near the amino-acid accepting terminus, however, there is a new stem and loop region not found in standard tRNA. This secondary structure is compatible with a L-shaped three-dimensional organization in which the corner of the L and the anticodon-containing limb are similar to, and the amino-acid accepting region different from, that in tRNA. Ethylnitrosourea accessibility studies have shown similar tertiary structure features in the T[unk] loop of tRNAVal and in the homologous region of the viral RNA.  相似文献   

19.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

20.
Alloaffinity filtration simply and specifically separates certain axonemal dyneins and dynein arm components from crude mixtures on the basis of their ability to bind and decorate Tetrahymena axonemal microtubules on a filter in the absence of ATP and to detach and pass into the eluate when 0.5 mM ATP is added. The procedure, which may be performed repetitively, is successful in purifying a Tetrahymena dynein that has characteristics of 30 S dynein prepared by conventional methods, while other dyneins originally present in the mixture, e.g., 14 S Tetrahymena dynein, are not found in the ATP eluate. A relatively homogeneous population of dynein oligomers is obtained. Alloaffinity-purified 30 S Tetrahymena dynein consists of heavy-, intermediate-, and light-chain polypeptides that cosediment in a sucrose gradient in fixed molar ratios and that have structural features of in situ Tetrahymena arms. Dyneins from other species will bind to Tetrahymena microtubules and can be purified by this method. Alloaffinity-purified Chlamydomonas dynein is a set of polypeptides including the four heavy chains that characterize the outer arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号