首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental microwear has long been used as evidence concerning the diets of extinct species. Here, we present a comparative baseline series of dental microwear textures for a sample of 21 anthropoid primate species displaying interspecific and intraspecific dietary variability. Four dental microwear texture variables (complexity, anisotropy, textural fill volume, and heterogeneity) were computed based on scale-sensitive fractal analysis and high-resolution three-dimensional renderings of microwear surfaces collected using a white-light confocal profiler. The purpose of this analysis was to assess the extent to which these variables reflect variation in diet. Significant contrasts between species with diets known to include foods with differing material properties are clearly evident for all four microwear texture variables. In particular, species that consume more tough foods, such as leaves, tended to have high levels of anisotropy and low texture complexity. The converse was true for species including hard and brittle items in their diets either as staples or as fallback foods. These results reaffirm the utility of dental microwear texture analysis as an important tool in making dietary inferences based on fossil primate samples.  相似文献   

2.
The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately.  相似文献   

3.
The extensive early Pliocene mammalian assemblages at Langebaanweg hold the potential to provide important information about paleoenvironments of the southwestern tip of Africa, an area that today consititutes the Fynbos Biome. We here add to a growing body of literature on the paleoenviornments of the site with an examination of dental microwear textures of bovids from the Varswater Formation. Microwear texture analysis is a new, automated and repeatable approach that measures whole surfaces in three dimensions without observer error. A study of extant ruminants indicates that grazers have more anisotropic microwear surface textures, whereas browsers have more complex microwear surface textures. Fossil bovids recovered from the Muishond Fontein Pelletal Phosphorite Member vary in their microwear textures, with some taxa falling within the extant browser range, some closer to extant grazers, and others in between. These results are consistent with scenarios suggesting mosaic habitats including fynbos vegetation, some (probably C3) grasses, and woodland elements when these fossils were accumulated.  相似文献   

4.
Most studies of microscopic wear on non-human primate teeth have focused on the occlusal surfaces of molars. Recent analyses of the buccal surfaces of human cheek teeth have demonstrated an association between diet and dental microwear on the these surfaces as well. In the current study, we examine microwear on both the buccal and lingual surfaces of non-human primate molars to assess the potential of these surfaces to reveal information concerning anthropoid feeding behaviors. We compare frequency of microwear occurrence in 12 extant and 11 fossil anthropoid species. Among the living primates, the occurrence of microwear on non-occlusal surfaces appears to relate to both diet and degree of terrestriality. The implications of this research for the inference of feeding behaviors and substrate use in fossil cercopithecoids are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

5.
This study employs dental microwear texture analysis to reconstruct the diets of two families of subfossil lemurs from Madagascar, the archaeolemurids and megaladapids. This technique is based on three-dimensional surface measurements utilizing a white-light confocal profiler and scale-sensitive fractal analysis. Data were recorded for six texture variables previously used successfully to distinguish between living primates with known dietary differences. Statistical analyses revealed that the archaeolemurids and megaladapids have overlapping microwear texture signatures, suggesting that the two families occasionally depended on resources with similar mechanical properties. Even so, moderate variation in most attributes is evident, and results suggest potential differences in the foods consumed by the two families. The microwear pattern for the megaladapids indicates a preference for tougher foods, such as many leaves, while that of the archaeolemurids is consistent with the consumption of harder foods. The results also indicate some intraspecific differences among taxa within each family. This evidence suggests that the archaeolemurids and megaladapids, like many living primates, likely consumed a variety of food types.  相似文献   

6.
Dental microwear analysis is conducted on a community of platyrrhine primates from South America. This analysis focuses on the primate community of Cachoeira Porteira (Para, Brazil), in which seven sympatric species occur: Alouatta seniculus, Ateles paniscus, Cebus apella, Chiropotes satanas, Pithecia Pithecia, Saguinus midas, and Saimiri sciureus. Shearing quotients are also calculated for each taxon of this primate community. Dental microwear results indicate significant differences between taxa, but are somewhat insufficient when it comes to discriminating between ecologically similar taxa. The primates of Cachoeira Porteira all incorporate a certain amount of fruit in their diet, entailing a definite amount of inter-specific competition as they must share food resources. Alouatta is the most folivorous taxon of this community, which is corroborated by dental microwear analysis. Ateles, although of a similar size to Alouatta, limits inter-specific competition by incorporating more fruit in its diet. Cebus has a very diverse omnivorous diet, which is highlighted in this study, as it compares to both fruit and leaf eating taxa. In some cases, microwear results need to be supplemented by other methods. For example, dental microwear seems insufficient to distinguish between Pithecia and Chiropotes, which eat foods with similar physical properties. However, other methods (i.e. shearing quotients and body mass) provide enough complimentary information to be able to highlight differences between the two taxa. On the other hand, dental microwear can highlight differences between primates which have similar diets, such as Saimiri and Saguinus. In this case, differences could be due to other exogenous factors.  相似文献   

7.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

8.

Background

Dental microwear analyses are commonly used to deduce the diet of extinct mammals. Conventional methods rely on the user identifying features within a 2D image. However, recent interdisciplinary research has lead to the development of an advanced methodology that is free of observer error, based on the automated quantification of 3D surfaces by combining confocal microscopy with scale-sensitive fractal analysis. This method has already proved to be very efficient in detecting dietary differences between species. Focusing on a finer, intra-specific scale of analysis, the aim of this study is to test this method''s ability to track such differences between individuals from a single population.

Methodology/Principal Findings

For the purposes of this study, the 3D molar microwear of 78 individuals from a well-known population of extant roe deer (Capreolus caprelous) is quantified. Multivariate statistical analyses indicate significant seasonal and sexual differences in individual dental microwear design. These are probably the consequence of seasonal variations in fruit, seed and leaf availability, as well as differences in feeding preference between males and females due to distinct energy requirements during periods of rutting, gestation or giving birth. Nevertheless, further investigations using two-block Partial Least-Squares analysis show no strong relationship between individual stomach contents and microwear texture. This is an expected result, assuming that stomach contents are composed of food items ingested during the last few hours whereas dental microwear texture records the physical properties of items eaten over periods of days or weeks.

Conclusions/Significance

Microwear 3D scale-sensitive fractal analysis does detect differences in diet ranging from the inter-feeding styles scale to the intra-population between-season and between-sex scales. It is therefore a possible tool, to be used with caution, in the further exploration of the feeding biology and ecology of extinct mammals.  相似文献   

9.
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.  相似文献   

10.
One problem with dental microwear analyses of museum material is that investigators can never be sure of the diets of the animals in question. An obvious solution to this problem is to work with live animals. Recent work with laboratory primates has shown that high resolution dental impressions can be obtained from live animals. The purpose of this study was to use similar methods to begin to document rates and patterns of dental microwear for primates in the wild. Thirty-three Alouatta palliata were captured during the wet season at Hacienda La Pacifica near Canas, Costa Rica. Dental impressions were taken and epoxy casts of the teeth were prepared using the methods of Teaford and Oyen (1989a). Scanning electron micrographs were taken of the left mandibular second molars at magnifications of 200x and 500x. Lower magnification images were used to calculate rates of wear, and higher magnification images were used to measure the size and shape of microwear features. Results indicate that, while basic patterns of dental microwear are similar in museum samples and samples of live, wild-trapped animals of the same species, ecological differences between collection locales may lead to significant intraspecific differences in dental microwear. More importantly, rates of microwear provide the first direct evidence of differences in molar use between monkeys and humans.  相似文献   

11.
在古食性研究中,牙齿微痕是指动物在咀嚼食物的过程中在牙齿咬合面上产生的微观磨损痕迹。不同食性的动物具有不同的牙齿微痕特征,因此可以通过研究牙齿微痕特征来重建灭绝动物的古食性,为探讨动物演化和古生态环境变化提供重要信息。本文主要介绍牙齿微痕作为一种简单而高效的古食性重建方法在古生物领域中的应用。本文主要内容包括牙齿微痕的发展历史,形成机理与应用,以及近年来被广泛应用的牙齿微痕定量化分析——表面纹理分析法,并在最后浅谈了牙齿微痕研究未来可能研究的方向。  相似文献   

12.
Analyses of buccal tooth microwear have been used to trace dietary habits of modern hunter-gatherer populations. In these populations, the average density and length of striations on the buccal surfaces of teeth are significantly cor-related with the abrasive potential of food items consumed. In non-human pri-mates, tooth microwear patterns on both occlusal and buccal wear facets have been thoroughly studied and the results applied to the characterization of dietary habits of fossil species. In this paper, we present inter- and intra-specific buccal microwear variability analyses in extant Cercopithecoidea (Cercopithecus mitis, C. neglectus, Chlorocebus aethiops, Colobus spp., Papio anubis) and Hominoidea (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). The results are tentatively compared to buccal microwear patterns of the Miocene fossils Dryopithecus and Oreopithecus. Significant differences in striation density and length are found among the fossil taxa studied and the extant primates, suggesting that buccal microwear can be used to identify dietary differences among taxa. The Dryopithecus buccal microwear pattern most closely resembles that of abrasive, tough plant foods consumers, such as the gorilla, in contrast to stud-ies of dental morphology that suggest a softer, frugivorous diet. Results for Oreopithecus were equivocal, but suggest a more abrasive diet than that previously thought.  相似文献   

13.
Tooth microwear studies have been carried out for several reasons in the last decade. Most effort has been put into categorizing wear types that reflect dietary preferences in order to reconstruct the diet of extinct species. Several studies have shown that, for primates, carnivores and ruminants, it is possible to differentiate statistically the microwear associated with the major dietary adaptations in the group. It has further been found that more subtle dietary changes, such as seasonal ones, can be picked up if the sampling is good enough. It is important to recognize that, although it may be a valuable and legitimate concern to study the specific causes of different microwear patterns, that information is not essential for dietary reconstruction, if different microwear states can be shown empirically to correspond to different dietary regimes. Image enhancement and optical diffraction methods offer hope of automated scanning of large samples. This will be a major benefit as the methods currently in use are labor-intensive and time-consuming. Finally, it is urged that as many methods as possible be used to solve problems of dietary reconstruction.  相似文献   

14.
Mastication of dietary items with different mechanical properties leaves distinctive microscopic marks on the surface of tooth enamel. The inspection of such marks (dental microwear analysis) is informative about the dietary habitus in fossil as well as in modern species. Dental microwear analysis relies on the morphology, abundance, direction, and distribution of these microscopic marks. We present a new freely available software implementation, MicroWeaR, that, compared to traditional dental microwear tools, allows more rapid, observer error free, and inexpensive quantification and classification of all the microscopic marks (also including for the first time different subtypes of scars). Classification parameters and graphical rendering of the output are fully settable by the user. MicroWeaR includes functions to (a) sample the marks, (b) classify features into categories as pits or scratches and then into their respective subcategories (large pits, coarse scratches, etc.), (c) generate an output table with summary information, and (d) obtain a visual surface‐map where marks are highlighted. We provide a tutorial to reproduce the steps required to perform microwear analysis and to test tool functionalities. Then, we present two case studies to illustrate how MicroWeaR works. The first regards a Miocene great ape obtained from through environmental scanning electron microscope, and other a Pleistocene cervid acquired by a stereomicroscope.  相似文献   

15.
Studies of dental microwear have been used to relate tooth form to function in a variety of recent and extinct mammals. Probably the most important aspect of microwear analysis is the possibility of using it to deduce the diet of extinct animals. Such deductions must be based on comparative studies of modern species with known diets, but to date, only qualitative studies have been attempted and all have been based on small samples. Here we report quantitative differences in dental microwear between primate species that are known to have different diets. Occlusal facets with different functions have previously been shown to exhibit different microwear patterns. However, the differences between facets of one species are shown to be far less than those between homologous facets of different species. Study of seven species of extant primates shows that enamel microwear can be used to distinguish between those with a mainly frugivorous diet and those with a mainly folivorous one. Microwear can also distinguish hard-object feeders from soft-fruit eaters. The microwear of Miocene Sivapithecus indicus cannot be distinguished statistically from that of the chimpanzee, but it is different from that of the other species. On this evidence S. indicus was not a hard-object feeder and the adaptive significance of its thick molar enamel is at present unknown.  相似文献   

16.
Recent investigations of dental microwear have shown that such analyses may ultimately provide valuable information about the diets of fossil species. However, no background information about intraspecific variability of microwear patterns has been available until now. This study presents the results of an SEM survey of microwear patterns found on occlusal enamel of chimpanzee molars. Methods of pattern analysis are described. Selected sites on the occlusal surface included shearing, grinding, and puncture-crushing surfaces formed by both phases of the power stroke of mastication. The microwear patterns found in this sample of chimpanzees showed a high degree of regularity. However, certain parameters such as relative pit-to-striation frequencies, feature density, striation length, and pit diameter were significantly affected by facet type and molar position. Sex and age of individuals also influenced some microwear parameters, but due to the small sample size these findings are considered to be preliminary. These results show that microwear within a single species may vary because of factors that are due more to biomechanics than to diet. The study also supplies some metrical estimates of “normal” pattern variability due to functional and morphological influences. These estimates should provide a useful baseline for assessing the significance of microwear pattern differences that may be found between species of differing diets.  相似文献   

17.
Dental microwear of ten wild-shot chacma baboons (Papio urinus) form Northwest and Northern Privinces, South Africa was examined by scanning electron microscopy. All specimens were collected during the dry season, during which these primates exploit hypogeous (underground) food items, including tubers and corms. The microwear fabric of thisP. ursinus sample is characterized by high pitting frequencies and large microwear features. It differs significantly from those displayed by other terrestrially foraging papionins of the genusTheropithecus. Exogenous grit is hypothesized to be largely responsible for the observedP. ursinus wear pattern, which resembles the microwear profiles of durophagous primates. It is suggested that large microwear features and a high incidence of enamel pitting, which are generally held to represent a microwear “signature” of durophagy, may not always be indicative of hard-object feeding in anthropoid primates.  相似文献   

18.
This study quantitatively examined molar microwear in nine species of extant small-bodied faunivorous primates and microchiropterans. Comparative analyses were performed within the food category faunivory, both between hard- and soft-object feeding faunivores and between primarily insectivorous and carnivorous taxa. Additionally, microwear in faunivores was compared to that reported in the literature for frugivorous and folivorous primates. The results indicated that although insectivores and carnivores could not be distinguished by microwear analyses, hard-object faunivores (i. e., those that primarily consume beetles or actively comminute bone) can be readily distinguished from soft-object faunivores (i. e., moth, caterpillar, or vertebrate flesh specialists). The hard-object faunivores consistently exhibited greater pit frequencies (in excess of 40%). Furthermore, comparisons of these microwear data on faunivorous mammals to previous work on frugivorous and folivorous primates (Teaford, 1988, pers. comm.; Teaford and Runestad, 1992, pers. comm.; Teaford and Walker: American Journal of Physical Anthropology 64:191–200, 1984) permitted three observations to be made. 1) Faunivores tend to have higher mean feature densities than either frugivores or folivores, although these differences are not consistently statistically distinct. 2) Faunifores and frugivores that feed on hard-objects have comparable mean pit frequencies. 3) Although it is impossible to distinguish faunivores and folivores on the basis of metric analysis of gross molar morphology, this distinction can be made on microwear criteria. Both hard- and soft-object faunivores exhibit much higher mean pit frequencies than primarily folivorous species. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Several studies have suggested that incisor microwear reflects diet and feeding adaptations of anthropoids. However, such studies have been largely qualitative, and interpretations have relied on anecdotal references to diet and tooth use reported in the socioecology literature. The current study relates incisor microwear in four anthropoid primates to specific ingestive behaviors and food types. Central incisor casts of wild-shot museum specimens of Hylobates lar, Macaca fascicularis, Pongo pygmaeus, and Presbytis thomasi were examined by scanning electron microscopy, and analyzed using a semiautomated image analysis procedure. Microwear patterns were used to generate predictions regarding diet and anterior tooth use. These predictions were evaluated using data collected during a 1 year study of feeding behavior of these same taxa in the wild (Ungar, 1992, 1994a, b). Results suggest that (1) enamel prism relief is associated with the effectiveness of etching reagents in foods, (2) dental calculus buildup results from a lack of incisor use and perhaps the ingestion of sugar-rich foods, (3) striation density varies with degree of anterior tooth use in the ingestion of abrasive food items, (4) striation breadth is proposed to relate to the ratio of exogenous grit to phytoliths consumed; and (5) preferred striation orientation indicates the direction that food items are pulled across the incisors during ingestion. It is concluded that incisor microwear studies can contribute to the understanding of diets and feeding behaviors of extinct primates. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Recent microwear analyses have demonstrated that wear patterns can be correlated with dietary differences. However, much of this work has been based on analyses of museum material where dates and locations of collection are not well known. In view of these difficulties, it would be desirable to compare microwear patterns for different genera collected from the same area at the same time. The opportunity to do this was provided by the collections of the Smithsonian Venezuelan Project (Handley, 1976), in which multiple primate genera were collected from the same humid tropical forest sites within the same month. The monkeys represent a wide range of dietary preferences, and include Saimiri, Cebus, Chiropotes, Ateles, Aotus, Pithecia, and Alouatta. As in previous microwear analyses, epoxy replicas were prepared from dental impressions, as described by Rose (1983) and Teaford and Oyen (1989). Two micrographs were taken of facet 9 on an upper second molar of each specimen. Computations and analyses were the same as described by Teaford and Robinson (1989). Results reaffirm previously documented differences in dental microwear between primates that feed on hard objects versus those that do not--with Pithecia and Alouatta at the extremes of a range of microwear patterns including more subtle differences between species with intermediate diets. The subtle microwear differences are by no means easy to document in museum samples. However, additional results suggest that 1) the width of microscopic scratches may be a poor indicator of dietary differences, 2) large and small pits may be formed differently, and 3) there are very few seasonal differences in dental microwear in the primates at these humid tropical forest sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号