首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycloheximide given in vivo at low doses (2--5 mg/kg body weight) causes within 30 min a complete inhibition of protein synthesis in rat liver. The labelling of nuclear proteint is also strongly inhibited. Under these conditions, the amount of nucleolar 45-S pre-rRNA and its [14C]-orotate labelling remain unaffected for at least 4 h. These results show that initially the rates of synthesis and processing of 45-S pre-rRNA are not appreciably altered. On the other hand, drastic alterations in the 45-S pre-rRNA processing pathways occur at the early stages of cycloheximide action. Formation of 18-S rRNA is abolished and that of 28S rRNA is reduced to about half the level in control rats. This dichotomy in the production of the two ribosomal particles may be correlated with a block in the formation of 41-S and 21-S pre-rRNA. Generation of 36-S and 32-S pre-rRNA is still taking place, but the rate of their processing to nucleolar 28-S rRNA is decreased, thus causing the accumulation of these two pre-rRNA species. In parallel, processing of 45-S pre-rRNA to an aberrant 39-S rRNA species is markedly enhanced. The results obtained show that the channelling of nucleolar pre-rRNA along alternative processing pathways is under stringent control by the continuous supply of critical protein(s).  相似文献   

2.
3.
The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.  相似文献   

4.
5.
6.
The U18 small nuclear RNA (snRNA) is one of several newly discovered intron-encoded nucleolar RNAs whose function is unknown. We have studied the accumulation and function of the U18 snRNA in oocytes of the vertebrate, Xenopus laevis. The U18 snRNA contains 13 nt complementary to a highly conserved sequence in 28S ribosomal RNA (rRNA). Three oligonucleotides, selected to contain all or some of the complementary sequence, deplete the U18 snRNA upon injection into Xenopus oocytes. Injection of two of the oligonucleotides has no effect on pre-rRNA processing or ribosome transport. Injection of the third oligonucleotide does interrupt pre-18S rRNA processing, but this is due to coincidental simultaneous depletion of the U22 snRNA. The U18 snRNA is the first nucleolar snRNA that is not essential for ribosome biogenesis in vertebrates.  相似文献   

7.
8.
Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps.  相似文献   

9.
10.
11.
The nucleolus, the compartment in which the large ribosomal RNA precursor (pre-rRNA) is synthesized, processed through a series of nucleolytic cleavages and modifications into the mature 18S, 5.8S, and 28S rRNAs, and assembled with proteins to form ribosomal subunits, also contains many small nucleolar RNAs (snoRNAs). We present evidence that the first processing event in mouse rRNA maturation, cleavage within the 5' external transcribed spacer, is facilitated by at least four snoRNAs: U14, U17(E1), and E3, as well as U3. These snoRNAs do not augment this processing by directing 2'-O-methylation of the pre-rRNA. A macromolecular complex in which this 5'ETS processing occurs may then function in the processing of 18S rRNA.  相似文献   

12.
Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.  相似文献   

13.
rRNA from detergent-purified nuclei was fractionated quantitatively, by two independent methods, into nucleolar and nucleoplasmic RNA fractions. The two RNA fractions were analysed by urea/agar-gel electrophoresis and the amount of pre-rRNA (precursor of rRNA) and rRNA components was determined. The rRNA constitutes 35% of total nuclear RNA, of which two-thirds are in nucleolar RNA and one-third in nucleoplasmic RNA. The identified pre-rRNA components (45 S, 41 S, 39 S, 36 S, 32 S and 21 S) are confined to the nucleolus and constitute about 70% of its rRNA. The remaining 30% are represented by 28 S and 18 S rRNA, in a molar ratio of 1.4. The bulk of rRNA in nucleoplasmic RNA is represented by 28 S and 18 S rRNA in a molar ratio close to 1.0. Part of the mature rRNA species in nucleoplasmic RNA originate from ribosomes attached to the outer nuclear membrane, which resist detergent treatment. The absolute amount of nuclear pre-rRNA and rRNA components was evaluated. The amount of 32 S and 21 S pre-rRNA (2.9 x 10(4) and 2.5 x 10(4) molecules per nucleus respectively) is 2-3-fold higher than that of 45 S, 41 S and 36 S pre-rRNA.  相似文献   

14.
The synthesis and processing of RNA by isolated HeLa cell nuclei was studied at low ionic strength in the presence of alpha-amanitin. The RNA polymerase reaction, with endogenous template and enzyme, rapidly reaches a plateau dependent on the amount of nuclei. Evidence is presented that incorporation of [(3)H]UMP proceeds only in growing RNA chains, whereas initiation of new RNA chains is arrested. The product formed contains all the main components of the 45S pre-rRNA (precursor of rRNA) maturation pathway (45S, 32S and 20S pre-rRNA; 28S and 18S rRNA). Most of the labelled material is in the mature rRNA components and their immediate precursors, even at very short times of incubation (2min). Small, but definite, 5S and 4S RNA peaks are also observed. At shorter incubation times a substantial amount of [(3)H]UMP is incorporated into RNA molecules in the 24S and 10-16S zones. This RNA material is considered to represent the non-conserved segments of 45S pre-rRNA in the process of nucleolytic degradation. A model for the tracer study of the topology of 45S pre-rRNA, on arrest of rRNA initiation, is discussed. The experimental evidence obtained supports the following structure of 45S pre-rRNA: 5'-end-28S rRNA unit-18S rRNA unit-nonconserved segment-3'-end.  相似文献   

15.
NSR1 is a yeast nuclear localization sequence-binding protein showing striking similarity in its domain structure to nucleolin. Cells lacking NSR1 are viable but have a severe growth defect. We show here that NSR1, like nucleolin, is involved in ribosome biogenesis. The nsr1 mutant is deficient in pre-rRNA processing such that the initial 35S pre-rRNA processing is blocked and 20S pre-rRNA is nearly absent. The reduced amount of 20S pre-rRNA leads to a shortage of 18S rRNA and is reflected in a change in the distribution of 60S and 40S ribosomal subunits; there is no free pool of 40S subunits, and the free pool of 60S subunits is greatly increased in size. The lack of free 40S subunits or the improper assembly of these subunits causes the nsr1 mutant to show sensitivity to the antibiotic paromomycin, which affects protein translation, at concentrations that do not affect the growth of the wild-type strain. Our data support the idea that NSR1 is involved in the proper assembly of pre-rRNA particles, possibly by bringing rRNA and ribosomal proteins together by virtue of its nuclear localization sequence-binding domain and multiple RNA recognition motifs. Alternatively, NSR1 may also act to regulate the nuclear entry of ribosomal proteins required for proper assembly of pre-rRNA particles.  相似文献   

16.
17.
18.
19.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号