首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three functional classes of neurons are described in the visual cortex of the Siberian chipmunk: neurons not selective for direction of movement and orientation, neurons selective for movement in a particular direction, and neurons selective for orientation. Unselective and directionally-selective neurons were activated maximally at speeds of movement of 100–500 deg/sec or more, most orientation-selective neurons at speeds of 10–50 deg/sec. For all three classes of neurons clear correlation was observed between selectivity for velocity of movement and character of responses to presentation of stimuli stationary in the receptive field. With reference to this sign the neurons were divided into two groups: phasic (fast) and tonic (slow). Phasic (fast) neurons predominate in the visual cortex ofEutamias sibiricus.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 807–814, November–December, 1984.  相似文献   

2.
Responses of 46 neurons of the CA1 field, of the dorsal hippocampus to visual stimuli were investigated during acute experiments on awake cats following pretrigeminal brainstem action. The receptive field was small in size in 71% of hippocampal neurons. The cells responded both tonically (34%) and phasically (66%) to the presentation of immobile stimuli. All the test cells of the CA1 field of the dorsal hippocampus responded to moving visual stimuli and 27% of these neurons were directionally tuned. A group of 7% of the neurons displayed particular sensitivity to the movement of a dark spot across the receptive field; these cells frequently reacted more to a moving dark spot than to a bar. Findings indicate the presence of highly specific sensory neurons within the hippocampus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 779–786, November–December, 1985.  相似文献   

3.
The organization of receptive fields of neurons sensitive to orientation of visual stimuli was investigated in the squirrel visual cortex. Neurons with mutually inhibitory on- and off-areas of the receptive field, with partially and completely overlapping excitatory and inhibitory mechanisms, were distinguished. Neurons of the second group are most typical. They exhibit orientation selectivity within the excitatory area of the receptive field because, if the stimulus widens in the zero direction, perpendicular to the preferred direction, lateral inhibition is much stronger than if it widens in the preferred direction. Additional inhibitory areas (outside the excitatory area) potentiate this inhibition and increase selectivity. It is suggested that there is no strict separation of simple (with separate excitatory and inhibitory mechanisms in the receptive field) and complex (with overlapping of these mechanisms) neurons in the squirrel visual cortex.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 540–549, November–December, 1979.  相似文献   

4.
Responses of neurons in the superior colliculi and visual cortex of rabbits to a black and white boundary moving in different directions were investigated. Neurons responding clearly to presentation of the black and white boundary moving in one direction (movement in the opposite direction led to inhibition of spontaneous activity) and neurons giving well-defined maximal responses to movement of this boundary in 2 or 3 directions were found in the superior colliculi. Neurons with a marked maximal response to the stimulus moving in 1 or 2 directions were found in the visual cortex. Nembutal has a powerful effect on the quantitative detector properties of visual cortical neurons and sometimes may completely inhibit unit activity.V. Kapsukas Vilnius State University. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 61–67, January–February, 1972.  相似文献   

5.
Static and dynamic properties of receptive fields of neurons in the lateral suprasylvian area of the cat cerebral cortex were studied. Neurons with different dynamic characteristics may have an identical static organization of their receptive fields; strict correlation is thus not found between these two characteristics of neurons in this area. Most black-sensitive neurons were found to have a receptive field with off-response. Stimulus contrast reversal tests showed that generation of responses to presentation of both black and light stimuli takes place as a result of excitation of the same area of the receptive field and is not due to spatially different on- and off-zones.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 116–123, January–February, 1984.  相似文献   

6.
Inhibitory components in the response evoked by presentation of mobile visual stimuli in neurons belonging to the lateral suprasylvian area of the cerebral cortex were investigated in cats. It was demonstrated by comparing poststimulus histograms of neuronal response to movement in two opposite directions that the location of discharge centers within the receptive fields changed in relation to movement direction. No spatial area giving rise to the inhibitory component of response could be found in any of the neurons with monotone stationary structure of their receptive fields. Findings from experiments involving techniques of stimulating a test area of the receptive field separately indicated that inhibitory components of response in neurons of the lateral suprasylvian area with monotone organization of the receptive field could represent inhibitory after-response following the neuronal excitation produced by the visual stimulus traveling across this field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 299–308, May–June, 1987.  相似文献   

7.
8.
Unit activity was recorded from two parietal areas of the cat neocortex in semichronic experiments. Cell responses to presentation of adequate stimuli of different modalities and to direct electrical stimulation of various cortical zones were studied. About 4% of neurons of the Clare-Bishop area did not respond to visual stimulation. Cells responding to stimuli of different modalities were found in the Clare-Bishop area. A high percentage of cells in this area responded to direct electrical stimulation of area 17. In the association area (area 7) 27% of neurons tested responded to visual stimuli, but only a very small relative number of cells (compared with responding neurons of the Clare-Bishop area) responded to stimulation of the primary sensory areas. Electrical stimulation of area 7 inhibited evoked and spontaneous unit activity in the Clare-Bishop area. The hypothesis that these areas are the association representation of two different sections of the visual system — retino-geniculocortical and retino-tecto-thalamocortical — is discussed.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 612–620, November–December, 1981.  相似文献   

9.
The response of caudate nucleus neurons to presentation of photic stimuli located at varying distances from the fovea centralis was investigated in awake cats. Stimulation of different sites on the visual field below the fovea produced dissimilar reactions in 25 of the 35 (or 71%) of these neurons responding to photic stimulation. This divergence of response indicates that in 6 of these cells (or 17%) the receptive fields in the test area of the visual field bordered on the central area of the latter and 6 neurons (17%) showed reduced sensitivity to the effects of stimuli nearer to the periphery than to the center of the visual field, while 13 units (37%) were receiving qualitatively different information from various sites on the field of vision. On the basis of our findings we deduced that caudate nucleus neurons are involved in the analysis of visual sensory signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 241–250, March–April, 1986.  相似文献   

10.
Evoked unit activity was investigated bilaterally in neurons of the Clare-Bishop area in cat brain after unilateral severing of the posterior limb of the internal capsule. Cell responses to photic, acoustic, and somatosensory stimuli, also to electrical stimulation of the association areas of the neocortex were investigated. The most rudimentary type of response to a diffuse light flash, electrical stimulation of the forepaw skin, and acoustic stimulation was restored in a proportion of test cells in the operated hemisphere within one week of operating. Sensitivity to visual stimuli increased considerably in cells of the Clare-Bishop area of the intact hemisphere during the first week after the operation. All test cells responded to presentation of light flashes; 80% had receptive fields located to electrical stimulation of the forepaw skin. Seven days after the operation the number of cells responding to photic stimulation fell to 35% and only 17% of cells responded to somatosensory stimuli. This article discusses features of the neuronal compensatory reorganization of the Clare-Bishop area and its role in the recovery of visual function.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 180–187, March–April, 1986.  相似文献   

11.
The structure of receptive fields of single neurons in the lateral suprasylvian area of the cat's cortex was studied. Receptive fields of neurons in this area are larger (up to 2000 deg2 or more) than those of the visual projection cortex. A difference was found in the sizes of these fields of the same neuron when measured by presentation of a black object and spot of light. Experimental results showed that most neurons of the area (104 of 148) that are sensitive to visual stimulation respond clearly to flashes of a stationary spot of light. Because of this feature the structure of the receptive fields of the neurons were studied by point by point testing of their whole surface. Intensities of on- and off-components of on-off neurons were found to differ. Only 16% of receptive fields had equal numbers of discharges in on- and off-components of the on-off response. Dominance of one component was observed in 84% of on-off neurons. Receptive fields with several discharge centers are a characteristic feature of neurons in this area. A concentric organization of the receptive fields was found in 11% of neurons.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan, Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 278–283, May–June, 1982.  相似文献   

12.
Responses of 114 pulvinar neurons to moving visual stimuli were studied. Most (79) neurons possessed spontaneous activity (10–25 spikes/sec). Of 59 neurons tested, 31 responded to stimulation of both retinas and 28 to stimulation only of the contralateral retina. Of 114 neurons, 41 responded only to movement of black objects, while the rest responded to movement of both black and light objects. According to the character of their responses to movement the neurons were divided into two main groups. The first group consisted of neurons sensitive to the direction of motion and responding with a spike discharge to movement in one direction and by inhibition to movement in the opposite direction. The second group included neurons insensitive to the direction of motion and responding by an equal number of discharges to movements in two opposite directions. Besides these two main groups, other neurons responding to movement in two opposite directions by discharges with different temporal distribution and also neurons which changed the character of their response from nondirectional to directional depending on the size of the moving stimulus, were found.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 348–354, July–August, 1978.  相似文献   

13.
Depending on the organization of their receptive fields and character of their responses to shaped visual stimuli the following main groups of visual cortical neurons were distinguished in the squirrelSciurus vulgaris: nonselective for direction of movement and orientation of stimuli (14%); selective for direction of movement (30%) and selective for line orientation (49%); 7% of neurons were not classified. Cells selective for direction of movement and some nonselective cells exhibited specific sensitivity to high speeds of stimulus movement (optimal velocities of the order of hundreds of degrees per second). Neurons selective for line orientation differed in the degree of overlapping of their on- and off-zones; they could include analogs of simple and complex neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 125–231, March–April, 1981.  相似文献   

14.
Spatial frequency characteristics of receptive fields of occipital cortical neurons were investigated in cats during presentation of visual stimuli consisting of gratings in four or eight standard orientations. The maximal increase in discharge frequency of the neurons was observed when the grating was presented in one particular orientation, which was taken to be optimal for those particular neurons. Responses of some neurons to presentation of gratings in nonoptimal orientations were less than optimal; inhibition of activity below the spontaneous discharge level was observed in other cells in this case. Maximal inhibition was observed to the orientation perpendicular to optimal. Inhibition of unit activity evoked by presentation of gratings in the nonoptimal orientation was shown to be a function of spatial frequency.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 227–232, May–June, 1981.  相似文献   

15.
Electrical activity of single unit in the Clare-Bishop visual association area of the cortex was studied in acute experiments on cats immobilized with Flaxedil and after pretrigeminal sections. The method of extracellular recording of action potentials of single units was used. The experimental results showed that 95.5% of cells responding to visual stimulation responded to movement of a spot of light in the receptive field of the neurons, and 55% of the cells responded selectively to the direction of movement. Some neurons responded to movement of a stimulus only when it entered and left the receptive field. About 85.3% of cells responded to a flashing spot of light, and also to a general change in the intensity of illumination of the receptive field. The receptive field of neurons of the Clare-Bishop area in most cases were in the form of stripes with their long axis horizontal. The results point to the important role of this cortical association area in the central analysis of visual information.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 22–29, January–February, 1978.  相似文献   

16.
The substructural organization of receptive fields of lateral suprasylvian cortical neurons, sensitive to movement of visual stimuli, was investigated in cats. The experimental results showed that receptive fields of neurons in this cortical area, judging by responses to movement, consist mainly of cells with qualitatively different characteristics. With the unmasked method of presentation of a moving stimulus, a reduction in the amplitude of movement as a rule evoked a directional response of the cell, whereas with the masked method, and with the same amplitudes of movement, a nondirectional response appeared. The receptive fields of some neurons were particularly sensitive to movement of borders but did not respond to the body of the stimulus like receptive fields of neurons described in other visual structures. Heterogeneity of the substructural organization of receptive fields of lateral suprasylvian cortical neurons can be explained by convergence of inputs on the neuron and it is regarded as the basis of integrative mechanisms in this structure.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 293–300, May–June, 1985.  相似文献   

17.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

18.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

19.
Neurons responding to tactile and visual stimulation were found in the caudal section of the cruciate slucus ventral bank in awake cats. Tactile receptive fields were located on the face, mainly around the mouth. Visual stimuli evoked a response when presented close to the tactile receptive field. It was found that the visual responses of these bimodal neurons located in layer VI of the cortex display spatial consistency. The position of these visual receptive fields remained constant through saccadic eye movements, while still linked to the tactile receptive field.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neifofiziologiya, Vol. 18, No. 6, pp. 800–805, November–December, 1986.  相似文献   

20.
Investigation of receptive fields of 232 primary visual cortical neurons in rabbits by the use of shaped visual stimuli showed that 21.1% are unselective for stimulus orientation, and 34.1% have simple, 16.4% complex, and 18.5% hypercomplex receptive fields, and 9.9% have other types. Neurons with different types of receptive fields also differed in spontaneous activity, selectivity for rate of stimulus movement, and acuteness of orientational selectivity. Neurons not selective to orientation were found more frequently in layer IV than in other layers, and very rarely in layer VI. Cells with simple receptive fields were numerous in all layers but predominated in layer VI. Neurons with complex receptive fields were rare in layer IV and more numerous in layers V and VI. Neurons with hypercomplex receptive fields were found frequently in layers II + III and IV, rarely in layers V and VI. Spontaneous unit activity in layer II + III was lowest on average, and highest in layer V. Acuteness or orientational selectivity of neurons with simple and complex receptive fields in layers II + III and V significantly exceeded the analogous parameter in layers IV and VI.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 19–27, January–February, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号