首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated beta irradiation of the backs of mice three times a week with radiation doses of 250 to 1180 cGy per exposure induced 100% incidence of tumors. The incidence of skin tumors appeared to be determined by the total number of repeated exposures in this dose range. An abrupt delay in tumor emergence was observed when the radiation dose was reduced from 250 to 150 cGy per exposure, indicating the existence of a critical threshold. Mouse skin resembles human skin rather than rat skin in its response to radiation.  相似文献   

2.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

3.
Several peculiarities in manifestations of cerebral form of radiation sickness have been revealed at a fractionated double irradiation with equal and unequal doses per fraction and different intervals between the fractions. A reliable increase in average lifespan of rats irradiated with (100 + 100 Gy) equal doses at 10 and 60 min intervals between two fractions compared to the single radiation exposure to 200 Gy has been obtained. Lifespan of rats irradiated with a total dose greater than 200 Gy in most cases of double exposures with 10 min interval was reliably less than that for animals after a single exposure. The influence of the first dose on the reduction of animal average lifespan increased with fraction dose increasing from 150 to 300 Gy and was most pronounced at the total exposure dose of 400 Gy. Reaction of rats on the repeated irradiation was significantly weakened in comparison with the reaction on the first exposure. At a study of capacitation the interval of 30 min appeared to be more favorable compared to 10 min interval. Importance of a dose value in the first fraction has been demonstrated: the higher this value the worse the capacity of the rats 3 hours after the repeated exposure.  相似文献   

4.
Different radiation dose patterns to the lung from inhaled beta-emitting radionuclides may influence the frequency and kind of biological effects. To determine the magnitude of this influence, groups of Beagle dogs were exposed to aerosols of 90Y, 91Y, 144Ce, or 90Sr in relatively insoluble particles and observed for their life spans. Different dose patterns were achieved by using these radionuclides having similar beta emissions and chemical form but having physical half-lives ranging from 2.6 days to 28 years. The range of initial lung burdens of radionuclides studied resulted in a range of biological effects from early deaths at the highest radiation doses to no discernible effects at the lowest doses. The effective half-lives of the four radionuclides in the lung ranged from 2.5 to 600 days. Within 1.5 years after exposure, some dogs died with radiation pneumonitis and pulmonary fibrosis. Between 1.5 and 10 years after exposure, 42 pulmonary carcinomas and 28 pulmonary sarcomas were observed in 163 dogs that died. Protracted irradiation of the lung from 90Sr or 144Ce resulted in a relatively high radiation dose and produced more total lung tumors but fewer lung tumors per rad than less protracted irradiation from 90Y or 91Y. At 10 years after inhalation exposure, the difference in risk per rad among the different dose patterns was a factor of 4 to 8, indicating that the different radiation dose patterns from inhaled beta emitters do influence lung tumor risk factors, at least at high (greater than 20,000 rad) doses to lung.  相似文献   

5.
Rotary viscosimeters were used to study the postirradiation destruction of the DNA-structural complex (DSC) of rat thymocyte nuclei exhibited by a change in alkaline denaturation of DSC upon lysis. The S area, limited by the characteristic viscosity values obtained during alkaline lysis of thymocyte nuclei, was used as a characteristic of DSC. Immediately after irradiation the S area changed up to 81-84 per cent at 0.5-1.5 Gy and up to 56-44 per cent at 2-10 Gy. 6 to 24 h following irradiation a change in the profile of alkaline denaturation of DSC was a function of dose and dropped from 100 down to 11 per cent at doses of 0 to 10 Gy. After 2-3 days, the changes in S were also observed but they were not a strict function of dose and were the same with the values obtained immediately after irradiation.  相似文献   

6.
The effects of a continuous exposure to cobalt gamma rays administered to rats at a daily dose of 0, 0.07, 0.12, 0.20 or 0.30 Gy for a period of up to 90 or 135 days, have been observed on their B lymphocyte populations and on their immunoglobulin serum levels. The effects increase with the daily dose and the duration of irradiation. At a daily dose of 0.07 Gy, no clear effect was observed. The depletion was almost negligible after 30 days at a daily dose of 0.12 Gy, but visible after all other doses and durations. However, a clear difference in susceptibility was observed between the marginal zone B compartment and the follicular one, the former being much more affected by the radiation than the second.  相似文献   

7.
Incidence of cerebrovascular diseases (CVD) has been studied in a cohort of 12210 workers first employed at one of the main plants (reactors, radiochemical or plutonium) of the Mayak nuclear facility during 1948-1958 and followed up to the end of 2000. Information on external gamma doses is available for virtually all (99.9%) of these workers; the mean (+/- one standard deviation) total gamma dose was 0.91 +/- 0.95 Gy (99% percentile 3.9 Gy) for men and 0.65 +/- 0.75 Gy (99% percentile 2.99 Gy) for women. Plutonium body burden was measured only for 30.0% of workers. Amongst those monitored, the mean (+/- standard deviation) cumulative liver dose from plutonium alpha exposure was 0.40 +/- 1.15 Gy (99% percentile 5.88 Gy) for men and 0.81 +/- 4.60 Gy (99% percentile 15.95 Gy) for women 4418 cases (first diagnosis) of CVD were identified in the studied cohort. A statistically significant increasing trend in CVD incidence with total external gamma dose was revealed after adjustment for non-radiation factors and internal exposure from incorporated plutonium-239. Excess relative risk per Gy was 0.464 (95% confidence interval 0.360-0.567). Incidence of CVD was statistically significantly higher for the workers chronically exposed to external gamma rays at a dose above 1.0 Gy A statistically significant increasing trend in CVD incidence with internal liver dose from plutonium alpha exposure was observed after adjustment for non-radiation factors and external exposure. ERR per Gy was 0.155 (95% confidence interval 0.075-0.235). CVD incidence was statistically significantly higher among workers with a plutonium liver dose above 0.1 Gy, although the trend estimates differed between workers at different plants. The incidence risk estimates for external radiation are generally compatible with estimates from the study of Chernobyl clean-up workers, although the incidence data point to higher risk estimates compared to those from the Japanese A-bomb survivors.  相似文献   

8.
We evaluated the effect of WR-2721 [S-2-(3-aminopropylamino)-ethylphosphorothioic acid] and cysteamine (2-mercaptoethylamine) on the development of radiation-induced mammary tumors in rats. Pregnant rats were treated with WR-2721 or cysteamine 30 min prior to whole-body irradiation with gamma rays from a (60)Co source at a dose of 1.5 or 2.6 Gy. Additional pregnant rats were given saline and then exposed to gamma rays at a dose of 0, 1.5 or 2.6 Gy as a control. All rats were implanted with pellets of diethylstilbestrol, a tumor promoter, 1 month after termination of nursing and were observed for 1 year to detect palpable mammary tumors. No mammary tumors developed in the saline-injected nonirradiated rats. However, when rats were irradiated with 1.5 or 2. 6 Gy after saline treatment, the incidence of mammary tumors was high (71.4 and 92.3%, respectively). Administration of WR-2721 or cysteamine prior to irradiation with 1.5 Gy significantly decreased the tumor incidence (23.8 and 20.8%, respectively). Tumor prevention by either agent was less effective at the higher dose. The appearance of the first mammary tumor occurred later in rats treated with WR-2721 or cysteamine than in the control rats. An increasing rate of adenocarcinoma in the control group was observed with increasing dose from 1.5 Gy up to 2.6 Gy. However, the development of adenocarcinoma did not increase after pretreatment with WR-2721 or cysteamine in rats irradiated with 2.6 Gy. Many of the mammary tumors that developed in the control rats were of the ER(+)PgR(+) type. Administration of WR-2721 produced no tumors of the ER(+)PgR(+) type. Cysteamine treatment increased the development of ER-negative tumors. The serum concentration of progesterone was significantly higher in rats treated with WR-2721 or cysteamine than in the control rats. On the other hand, the estradiol-17beta concentration was reduced by treatment with WR-2721, but not significantly compared to the control. WR-2721 and cysteamine had no effect on the prolactin concentration of the irradiated rats. The results suggest that administration of WR-2721 or cysteamine prior to the irradiation has a potent preventive effect on theinitiation phase during mammary tumorigenesis.  相似文献   

9.
Colony formation by surviving spermatogonial stem cells was investigated by mapping pieces of whole mounted tubuli at intervals of 6 and 10 days after doses of 0.75 and 1.50 Gy of fission neutron irradiation. Colony sizes, expressed in numbers of spermatogonia per colony, varied greatly. However, the mean colony size found in different animals was relatively constant. The mitotic indices in large and small colonies and in colonies in different epithelial stages did not differ significantly. This finding suggests that size differences in these spermatogenic colonies are not caused by differences in growth rate. Apparently, surviving stem cells start to form colonies at variable times after irradiation. The number of colonies per unit area varied with the epithelial stages. Many more colonies were found in areas that during irradiation were in stages IX-III (IX-IIIirr) than in those that were in stages IV-VII (IV-VIIirr). After a dose of 1.50 Gy, 90% of all colonies were found in areas IX-IIIirr. It is concluded that the previously found difference in repopulation after irradiation between areas VIII-IIIirr and III-VIIIirr can be explained not by differences in colony sizes and/or growth rates of the colonies in these areas but by a difference in the number of surviving stem cells in both areas. In area XII-IIIirr three times more colonies were found after a dose of 0.75 Gy than after a dose of 1.50 Gy. In area IV-VIIirr the numbers of colonies differed by a factor of six after both doses. This finding indicates that spermatogonial stem cells are more sensitive to irradiation in epithelial stages IV-VII than in stages XII-III. In control material, spermatogonia with a nuclear area of 70-110 micron2 are rare. However, especially 6 days after irradiation, single cells of these dimensions are rather common. These cells were found to lie at random over the tubular basement membrane with no preference for areas with colonies. It is concluded that the great majority of these cells were not or do not derive from surviving stem cells. These enlarged cells most likely represent lethally injured cells that will die or become giant cells (nuclear area greater than 110 micron2).  相似文献   

10.
The hair follicle or its differentiated product, the hair, which represents the linear historical record of the follicular proliferative activity, could provide a biological dosimeter of value for dose distribution determinations after accidental exposure. Here we present some further studies on irradiated mouse hair follicles and hair, and discuss the difficulties in obtaining similar data for humans. The incidence of cell death in the follicles has been shown elsewhere to be maximum 12 h after irradiation, and it increases with dose. Here we confirm that doses of 0.2-0.4 Gy can be readily detected. We show here that there is only a little more cell death in the larger follicles even though they contain many more cells and mitotic figures. About one-third of all the dead cell fragments in a follicle can be seen in a good longitudinal follicle section. Mitotic activity declines progressively with dose in the large follicles, which start with more mitotic cells, showing the dose-dependent changes most readily. The dead cells are morphologically identical to apoptotic cells at the level of the light microscope, and they fragment into several bodies, the number of which increases with dose. The total number of apoptotic bodies or fragments in whole large follicles increases almost 100-fold over a range of 1.3 Gy (from 0.2 to 1.5 Gy) and about tenfold over the range 0.2-0.5 Gy. The estimated number of dead (apoptotic) cells increases about sevenfold over the same 1.3-Gy range. The width of the middle portion of the broadest, awl, hairs measured 12 days after irradiation decreases with increasing dose. About 80% of the hairs show an obvious reduction in width after 2 Gy and the effects of a dose of about 1 Gy can be detected. The width of the hair is reduced by 10-14% per Gy. A comparison has been made between BDF1 (black) and BALB-c (albino) mice. The large follicles contain similar numbers of mitotic cells, but the BALB-c mice are more sensitive both in terms of the radiation-induced apoptosis and in terms of a reduction in awl hair width.  相似文献   

11.
Trp53 heterozygous mice are radiation-sensitive and cancer-prone. Groups of 7-8-week-old female Trp53 heterozygous mice were exposed to 4 Gy of 60Co gamma radiation at high (0.5 Gy/min) or low (0.5 mGy/min) dose rate. Other groups received 10 or 100 mGy at low dose rate 24 h prior to the 4-Gy dose. Tumor frequency and latency were measured over the animals' life span. Exposure to 10 mGy prior to 4 Gy resulted in a small (approximately 5%) but significant life-span regain and increased latency (approximately 9%) for all malignant tumors taken together, but 100 mGy further reduced life span slightly (approximately 7%). Latency responses were tumor type-specific. The prior 10-mGy exposure resulted in a small (approximately 7%) regain in latency for lymphomas but no change in latency for spinal osteosarcomas. Increasing the adapting dose to 100 mGy eliminated the increase in lymphoma latency and further reduced life span (approximately 8%). A 10-mGy dose prior to 4 Gy at low dose rate had no effects. Adapting exposures had no significant effect on tumor frequency. We conclude that a single low dose induced a small protective response in vivo in Trp53+/- mice, reducing the carcinogenic effects of a subsequent large, high-dose-rate exposure by increasing tumor latency. The upper dose threshold at which low-dose protective effects gave way to detrimental effects was tumor type-specific, as found previously for spontaneous tumors in these same cancer-prone mice (Radiat. Res. 159, 320-327, 2003). However, the upper dose thresholds appear to be lower (below 100 mGy) for radiation-induced tumors than for the same tumors appearing spontaneously.  相似文献   

12.
Angiogenesis is critical for tumor development, growth and metastasis. The vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) and their tyrosine kinase receptors are major regulators of angiogenesis. Radiation induces the production of VEGF, FGF and PDGF in many tumor cells. We hypothesized that inhibition of the function of these growth factors could inhibit tumor angiogenesis and thereby enhance the efficacy of radiation therapy. To test this hypothesis, we used the small molecule inhibitors SU5416 (an inhibitor for Vegf receptor) and SU6668 (an inhibitor for Vegf, Fgf and Pdgf receptors) alone and in combination with fractionated irradiation to treat C3H mice bearing SCC VII carcinomas. The SCC VII tumors express Vegf, Fgf2 (also known as bFGF), Pdgf and their associated receptors. Animals were given either SU5416 or SU6668 daily before or after irradiation (2 Gy per fraction per day for 5 days). The results from these experiments demonstrate that administration of either SU5416 or SU6668 without radiation delayed tumor growth. Administration of SU5416 at a dose of 25 mg/kg per day (the maximum tolerated effective dose) inhibited tumor growth by 17.9% on day 7 (P < 0.05 compared to untreated control mice) and produced an average tumor growth delay time of 0.5-2.0 days. When combined with fractionated irradiation, administration of SU5416 increased the inhibition of tumor growth to 50-53% on day 7 and the tumor growth delay time to 5.7-6.5 days (P < 0.001 compared with SU5416 alone; P < or = 0.05 compared with radiation alone). SU6668 alone inhibited tumor growth in a dose-dependent manner. Administration of SU6668 at a dose of 75 mg/kg per day (a suboptimal dose) inhibited tumor growth by 36% on day 7 and produced an average tumor growth delay time of 3.3 +/- 1.4 days. The combination of SU6668 with fractionated radiation increased inhibition of tumor growth to 66-70% and the tumor growth delay time from 3.3 days to 11.9 days (P < or = 0.001 compared with either radiation alone or SU6668 alone). Administration of these agents before or after irradiation produced similar results (P = 0.40 for SU5416; P = 0.98 for SU6668). SU5416 or SU6668 alone or in combination with radiation was very well tolerated with little or no toxicity. These results suggest that inhibition of Vegf, Fgf and Pdgf receptor function by SU5416 and SU6668 can enhance the efficacy of irradiation. The targeting of multiple tyrosine kinase receptors by SU6668 is more effective than inhibition of the Vegf receptor alone by SU5416 for the enhancement of tumor cell killing by fractionated irradiation.  相似文献   

13.
低水平辐射诱导的细胞遗传学适应性反应   总被引:6,自引:0,他引:6  
蔡露  刘树铮 《遗传学报》1991,18(2):109-114
先用0.01GY x-射线(剂量率:0.01GY/分)体外照射人、兔外周血,经不同时间后再用1.5GY X-射线(0.44GY/分)照射,发现在G_0、G_1、S和G_2期受0.01GY X-射线照射后再给大剂量照射者,其染色体畸变率明显低于单纯受1.5GY X-射线照射组(P<0.01)。这一适应性反应能持续3个细胞周期,在接受小剂量照射后超过3个细胞周期再受大剂量照射者,染色体畸变率未见减少。若在第三细胞周期以后再次给予小剂量照射,可再次诱导适应性反应。用小鼠整体小剂量照射后骨髓细胞和生殖细胞亦出现这种适应性反应。另外也探讨了不同剂量和不同剂量率的预先照射对适应性反应的影响。  相似文献   

14.
In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1)--a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and αSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1-14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.  相似文献   

15.
The aim of this study was to evaluate the early-delayed effects of a low dose of the gamma acute radiation syndrome (1.5 Gy) on memory and on dopaminergic and serotoninergic metabolism in Swiss albino CD1 mice, of various ages (6, 10 and 20 weeks). At different times after irradiation (from 24 hr to three months), the mice were trained in a single-trial passive avoidance task and tested for retention either 24 hr or 5 days later. Their performance was compared to that of mice that were sham-irradiated. At the end of the behavioral test (days 3, 9, 30 and 93), the concentrations of dopamine (DA) and serotonin (5HT) and their metabolites were determined in hippocampus, anterior cortex and striatum of mice irradiated at the age of six weeks. No significant behavioral effect was observed whichever the age of the animals or the delay of observation. On the contrary at the moderate dose of 4.5 Gy we observed a significant memory deficit 9 days after the exposure. Considering the neurochemical study, in the striatum or in the frontal cortex, no significant modification was observed whichever the delay or the molecule. In the hippocampus slight modifications were noted: an increase (+144%, p = 0.002) in DA level on day 3 after exposure, and a decrease (-27%, p = 0.028) of 5HT level on day 30 post-irradiation. These modifications were only transient and not associated to modifications of the catabolites. This study demonstrates that total-body exposure to gamma radiation at low dose seems to induce only slight effects on the central nervous system.  相似文献   

16.
Measurements were made of clonogenic cell survival in rat rhabdomyosarcoma tumors as a function of time following in situ irradiation with single or fractionated doses of 225-kVp X rays or with 557-MeV/u neon ions in the distal position of a 4-cm extended-peak ionization region. Single doses of 20 Gy of X rays or 7 Gy of peak neon ions reduced the initial surviving fraction to approximately 0.025 for each modality. Daily fractionated doses (four fractions in 3 days) of either peak neon ions (1.75 Gy per fraction) or X rays (6 Gy per fraction) achieved a cell survival of approximately 0.02-0.03 after the fourth dose of radiation. In the single-dose experiments, significant 5- and 10-fold decreases in the fraction of clonogenic cells were observed between the third and fourth days after irradiation with peak neon ions and X rays, respectively. After the sixth day postirradiation, the residual clonogenic cells exhibited a rapid burst of proliferation leading to doubling times for the surviving cell fractions of approximately 1.5 days. Radiation-induced growth delay was consistent with the cellular repopulation dynamics. In the fractionated-dose experiments with both radiation modalities, a large delayed decrease in cell survival was observed at 1-3 days after completion of the fractionated-dose schedule. Cellular repopulation was consistent with postirradiation tumor volume regression and regrowth for both radiation modalities. The extent of decrease in survival following the four-fraction radiation schedule was approximately two times greater in X-irradiated than in neon-ion-irradiated tumors that produced the same survival level immediately after the fourth dose. Mechanisms underlying the marked reduction in cell survival 3-4 days postirradiation are discussed, including the possible role of a toxic host cell response against the irradiated tumor cells.  相似文献   

17.
The incidence of chromosome aberrations in bone marrow cells of femur did not exceed the spontaneous one in CBA mice exposed, during 70 days, to gamma-radiation at dose--rates of 33.7-35.8 nA/kg and cumulative dose of 2.75 Gy. A single acute exposure of intact animals to a dose of 2.98 Gy increased significantly the mutation level. Preirradiation with small doses increased the resistance of hereditary structures to sublethal radiation doses. Exogenous alpha-tocopherol (0.06 mg/20 g mass) protected the genetic apparatus of cells from total-body irradiation and was an additional factor decreasing the mutation level after acute exposure of mice at the background of long-term irradiation with small doses.  相似文献   

18.
The objective of this study was to investigate the incidence of overexpression of TP53 (formerly known as p53) in osteosarcomas occurring after treatment of rabbit mandibles with high-dose external-beam radiation. As part of a protocol investigating hyperbaric oxygen treatment for osteoradionecrosis, 102 female New Zealand-White rabbits underwent mandibular radiation treatments with a total dose of 64 Gy in 20 treatment fractions. Twelve animals died during irradiation, leaving 90 animals at risk for tumor development. These animals were divided into one control group and 12 other groups each treated with different schedules of postirradiation hyperbaric oxygen. All animals were sacrificed after the hyperbaric oxygen treatment, approximately 8 months after completion of irradiation. Seventeen of the 90 animals that survived after irradiation developed high-grade osteosarcomas, for a 19% incidence of malignancy. Tumor sizes ranged from 1-4 cm. Immunohistochemistry staining of the 17 tumors detected a 59% overall incidence of TP53 overexpression. There was no correlation between the intensity of hyperbaric oxygen treatment and development of osteosarcoma. The high incidence and short interval of development of osteosarcoma suggest that the study animals may have had a genetic predisposition to radiation-induced osteosarcoma. Additionally, our data provide further evidence that TP53 mutations may play an important role in radiation-induced osteosarcoma.  相似文献   

19.
We scored sister-chromatid exchanges (SCE) in bone marrow cells in 3-month-old rats as a function of time after 2 Gy of whole-body neutron irradiation. This dose reduced the mean survival time to 445 days after irradiation, and induced more than one tumor per animal; by 200 days post irradiation, all animals bore tumors at autopsy, but bone marrow was not a significant target for tumor induction. In controls, the mean SCE/cell remained constant from 3 to 24 months of age (2.38 SCE/cell, S.D. = 0.21). Irradiation induced 2 distinct increases in SCE: the first occurred during the days following exposure, and the second, from days 150 to 240. Thereafter, SCE values formed a plateau at 3.37 SCE/cell (S.D. = 0.39) until day 650. Between the two increases (i.e. from days 15 to 150), SCE dropped to control values. Analysis of SCE distribution per cell shows that the entire dividing cell population altered homogeneously during the increase in SCE. These results suggest that in our irradiated rats, the second increase in SCE coincides with tumor growth, whereas the first increase might be due to DNA damage that was rapidly repaired.  相似文献   

20.
Wen J  Jiang S  Chen B 《Bioelectromagnetics》2011,32(4):322-324
Our previous cellular experiments demonstrated that 100 Hz magnetic field (MF) was effective at enhancing apoptosis of liver cancer cells BEL‐7402 induced by X‐ray irradiation. This study was performed to further explore the possible synergism between 100 Hz MF and X‐ray in treatment of hepatoma‐implanted Balb/c mice. 100 Hz MF exposure with a mean flux density of 0.7 mT was performed inside an energized solenoid coil. Six MV X‐ray irradiation was generated using a linear accelerator. Tumor growth and survival of mice implanted with H22 cells were evaluated by measuring the tumor diameters and overall days of survival. Six groups treated with 100 Hz MF or X‐ray alone or a combination of MF and X‐ray were examined. Furthermore, the effects of different numbers of MF exposure periods on tumor growth and mice survival were examined when combined with 4 Gy X‐ray. Data referring to overall survival days and tumor diameters of the above groups were compared using log‐rank test and Student's t‐test. Our results showed that five periods of combined 100 Hz MFs and 4 Gy X‐ray could significantly extend the overall days of survival and reduce the tumor size compared to MF or X‐ray alone. Also, a greater number of 100 Hz MF exposure periods could further improve the survival and inhibit tumor growth in hepatoma‐implanted mice when combined with 4 Gy X‐ray. In conclusion, these findings suggested that 100 Hz MF could possibly synergize with 4 Gy X‐ray in terms of survival improvement and tumor inhibition in hepatoma‐implanted mice. Bioelectromagnetics 32:322–324, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号