首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Isoenzymes were analyzed by polyacrylamide gel electrophoresis and activity staining on the gels. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.  相似文献   

2.
Among the GDSL family of serine esterases/lipases is a group of bacterial enzymes that posses C-terminal extensions involved in outer membrane anchoring or translocation. ApeE from Salmonella enterica serovar Typhimurium, a member of this group, has been expressed in Escherichia coli and was resistant to protease digestion when the protease was added to whole cells, indicating a periplasmic localization. The five consensus blocks conserved within all GDSL esterases were identified in ApeE by multiple sequence alignment and separated from the C-terminal extension. The DNA sequence spanning the four invariant residues Ser, Gly, Asn, and His, and hence representing the catalytic domains of ApeE, was amplified by PCR and fused in frame to the transport domains of the autodisplay system. The resulting artificial esterase, called EsjA, was overexpressed in the cell envelope of E. coli and was shown to be active by the use of α-naphthyl acetate (α-NA) as a substrate in an in-gel activity stain after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface exposure of EsjA was indicated by its accessibility to protease added to whole cells. The esterase activity of whole cells displaying EsjA was determined by a pH agar assay and by the use of microplates with integrated pH-dependent optical sensors. α-NA, α-naphthyl butyrate, and α-naphthyl caproate were used as substrates, and it turned out that the substrate preferences of artificial EsjA were altered in comparison to original ApeE. Our results indicate that autodisplay of esterase in combination with pH sensor microplates can provide a new platform technology for the screening of tailor-made hydrolase activities.  相似文献   

3.
An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.  相似文献   

4.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

5.
BH1115 is a gene from Bacillus halodurans strain C-125 that hypothetically encodes a rhamnogalacturonan acetyl esterase (RGAE) of the CE-12 family. As confirmation, this gene was cloned, and the product was expressed in Escherichia coli strain Rosetta (DE3) cells and purified. The enzyme obtained was monomeric, with a molecular mass of 45 kDa, and exhibited alkaliphilic properties. A study of the inhibition of the activity by some modulators confirmed that the catalytic triad for the esterase activity was Ser-His-Asp. This enzyme also presents broad substrate specificity and is active toward 7-aminocephalosporanic acid, cephalosporin C, p-nitrophenyl acetate, β-naphthyl acetate, glucose pentaacetate, and acetylated xylan. Moreover, RGAE from B. halodurans achieves a synergistic effect with xylanase A toward acetylated xylan. As a member of the SGNH family, it does not adopt the common α/β hydrolase fold. The homology between the folds of RGAE from Aspergillus aculeatus and the hypothetical YxiM precursor from Bacillus subtilis, which both belong to the SGNH family, illustrates the divergence of such proteins from a common ancestor. Furthermore, the enzyme possesses a putative substrate binding region at the N terminus of the protein which has never been described to date for any RGAE.  相似文献   

6.
1. The influence of pH and the kind of buffer on the hydrolysis of lactose and four hetero-β-galactosides (phenyl β-galactoside, o-nitrophenyl β-galactoside, p-nitrophenyl β-galactoside and 6-bromo-2-naphthyl β-galactoside) by homogenates of rat small-intestinal mucosa has been studied. 2. There are at least two β-galactosidases present in the homogenates, one with optimum pH3–4 and another with optimum pH5–6. 3. The enzyme with the lower pH optimum is mainly a heterogalactosidase. It hydrolyses lactose slowly. The other enzyme is mainly a disaccharidase, since it hydrolyses lactose much more rapidly than the heterogalactosides. 4. Under the conditions used, citrate had an inhibitory effect on the 6-bromo-2-naphthyl β-galactosidase activity at pH3–4, but did not influence the 6-bromo-2-naphthyl β-galactosidase activity at pH5–6 or the hydrolysis of the other substrates at any pH.  相似文献   

7.
A genomic library of Pseudomonas fluorescens DSM 50106 in a λRESIII phage vector was screened in Escherichia coli K-12 for esterase activity by using α-naphthyl acetate and Fast Blue RR. A 3.2-kb DNA fragment was subcloned from an esterase-positive clone and completely sequenced. Esterase EstF1 was encoded by a 999-bp open reading frame (ORF) and exhibited significant amino acid sequence identity with members of the serine hydrolase family. The deduced amino acid sequences of two other C-terminal truncated ORFs exhibited homology to a cyclohexanone monooxygenase and an alkane hydroxylase. However, esterase activity was not induced by growing of P. fluorescens DSM 50106 in the presence of several cyclic ketones. The esterase gene was fused to a His tag and expressed in E. coli. The gene product was purified by zinc ion affinity chromatography and characterized. Detergents had to be added for purification, indicating that the enzyme was membrane bound or membrane associated. The optimum pH of the purified enzyme was 7.5, and the optimum temperature was 43°C. The showed highest purified enzyme activities towards lactones. The activity increased from γ-butyrolactone (18.1 U/mg) to -caprolactone (21.8 U/mg) to δ-valerolactone (36.5 U/mg). The activities towards the aliphatic esters were significantly lower; the only exception was the activity toward ethyl caprylate, which was the preferred substrate.  相似文献   

8.
EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70°C, respectively. The half-life of EstS1 at 60°C was 15 h, indicating that the enzyme had good thermostability. The specificity constant (kcat/Km) of the enzyme for p-nitrophenyl butyrate was as high as 6,770 mM−1 s−1. The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37°C, with all substrates being completely degraded within 24 h. At 60°C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures.  相似文献   

9.

Background

Esterases with excellent merits suitable for commercial use in ester production field are still insufficient. The aim of this research is to advance our understanding by seeking for more unusual esterases and revealing their characterizations for ester synthesis.

Methodology/Principal Findings

A novel esterase-encoding gene from Rhizomucor miehei (RmEstA) was cloned and expressed in Escherichia coli. Sequence analysis revealed a 975-bp ORF encoding a 324-amino-acid polypeptide belonging to the hormone-sensitive lipase (HSL) family IV and showing highest similarity (44%) to the Paenibacillus mucilaginosus esterase/lipase. Recombinant RmEstA was purified to homogeneity: it was 34 kDa by SDS-PAGE and showed optimal pH and temperature of 6.5 and 45°C, respectively. The enzyme was stable to 50°C, under a broad pH range (5.0–10.6). RmEstA exhibited broad substrate specificity toward p-nitrophenol esters and short-acyl-chain triglycerols, with highest activities (1,480 U mg−1 and 228 U mg−1) for p-nitrophenyl hexanoate and tributyrin, respectively. RmEstA efficiently synthesized butyl butyrate (92% conversion yield) when immobilized on AOT-based organogel.

Conclusion

RmEstA has great potential for industrial applications. RmEstA is the first reported esterase from Rhizomucor miehei.  相似文献   

10.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a Km of 0.9 mM and a Vmax of 785 μmol min−1 mg−1. It had temperature and pH optima of 30°C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

11.
K. Meghji  O. P. Ward    A. Araujo 《Applied microbiology》1990,56(12):3735-3740
Bacillus subtilis NRRL 365 produced high extracellular carboxyl esterase activity in submerged culture media containing wheat bran, corn steep liquor, and salts. Supplementation of this medium with glucose reduced esterase activity to 37% of that in the unsupplemented control. Esterase activity was purified by ammonium sulfate fractionation, DEAE-Sephadex A-50 ion-exchange chromatography with sodium chloride gradient elution, and preparative polyacrylamide gel electrophoresis. The resultant purified components, esterases I and II, manifested single bands following silver staining of polyacrylamide gel electrophoresis gels and had final specific activities of 80 and 520 U/mg, respectively. Molecular weights for components I and II were 36,000 and 105,000 to 110,000, respectively. Esterases I and II both had a pH optimum of 8.0, with relative activities of 10 and 85%, respectively, at pH 9.0. Kms with p-nitrophenylacetate were 0.91 mM for esterase I and 0.67 mM for esterase II. In general, patterns of enzyme inhibition were similar for both components. Differences were observed in the relative activities of esterases I and II towards p-nitrophenyl esters of acetate, propionate, and butyrate; Activity ratios for components I and II were 100:94:48 and 100:36:23, respectively. The purified components did not hydrolyze long-chain triglycerides and did not manifest proteolytic activity.  相似文献   

12.

Background

Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored.

Methodology/Principal Findings

A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data.

Conclusions/Significance

The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC''s solution aggregation affected its activity.  相似文献   

13.
In this study, we report the characterization of a protein from Aspergillus oryzae, exhibiting sequence identity with paraben esterase from the genus Aspergillus. The coding region of 1,586 bp, including a 77-bp intron, encoded a protein of 502 amino acids. The gene without the signal peptide of 19 amino acids was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0–8.0 and 30 °C, respectively, and was stable at the pH range of 7.0–10.0 and up to 40 °C. The optimal substrate for hydrolysis by the purified recombinant protein, among a panel of α-naphthyl esters (C2–C16), was α-naphthyl butyrate (C4), with activity of 0.16 units/mg protein. The considerable hydrolytic activity of the purified recombinant enzyme toward tributyrin was determined. However, no paraben esterase activity was detected toward the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid. In addition, no activity was detected toward the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids that would indicate feruloyl esterase activity.  相似文献   

14.
A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45°C, respectively. The enzyme was not stable at temperatures above 40°C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate.  相似文献   

15.
Purification and physical properties of sweet-almond α-galactosidase   总被引:1,自引:1,他引:0  
1. α-Galactosidase from sweet almonds was purified about 2000-fold through eight steps. 2. The enzyme preparation was free from other related enzymes known to occur in sweet almonds, and behaved as a homogeneous protein on filtration through Sephadex G-75. 3. A molecular weight of about 33000 was determined from the gel-filtration data. 4. The ultraviolet-absorption spectrum and thermal inactivation of the enzyme are described. 5. The purified enzyme hydrolysed p-nitrophenyl α-d-galactoside at a much faster rate than melibiose. 6. The pH optimum was at 5·5–5·7. 7. Besides hydrolysis, it also catalysed transfer of galactosyl residues, chain elongation of melibiose and the synthesis of oligosaccharides from galactose.  相似文献   

16.
During the fermentation of sugars to ethanol relatively high levels of an undesirable coproduct, ethyl acetate, are also produced. With ethanologenic Escherichia coli strain KO11 as the biocatalyst, the level of ethyl acetate in beer containing 4.8% ethanol was 192 mg liter−1. Although the E. coli genome encodes several proteins with esterase activity, neither wild-type strains nor KO11 contained significant ethyl acetate esterase activity. A simple method was developed to rapidly screen bacterial colonies for the presence of esterases which hydrolyze ethyl acetate based on pH change. This method allowed identification of Pseudomonas putida NRRL B-18435 as a source of this activity and the cloning of a new esterase gene, estZ. Recombinant EstZ esterase was purified to near homogeneity and characterized. It belongs to family IV of lipolytic enzymes and contains the conserved catalytic triad of serine, aspartic acid, and histidine. As expected, this serine esterase was inhibited by phenylmethylsulfonyl fluoride and the histidine reagent diethylpyrocarbonate. The native and subunit molecular weights of the recombinant protein were 36,000, indicating that the enzyme exists as a monomer. By using α-naphthyl acetate as a model substrate, optimal activity was observed at pH 7.5 and 40°C. The Km and Vmax for α-naphthyl acetate were 18 μM and 48.1 μmol·min−1·mg of protein−1, respectively. Among the aliphatic esters tested, the highest activity was obtained with propyl acetate (96 μmol·min−1·mg of protein−1), followed by ethyl acetate (66 μmol·min−1·mg of protein−1). Expression of estZ in E. coli KO11 reduced the concentration of ethyl acetate in fermentation broth (4.8% ethanol) to less than 20 mg liter−1.  相似文献   

17.
The esterases of rabbit lung have been investigated from two viewpoints, the cytochemical and the biochemical. To accomplish this objective, we designed and synthesized a series of ester substrates which provide both a cytochemical indicator of the location of the enzyme and a means of following the enzymatic activity in tissue homogenates and subfractions. The substrates are p-nitrophenylthiol esters which yield, upon hydrolysis, carboxylic acid and p-nitrothiophenol. The latter can react with aurous ions to give an electron-opaque deposit; in addition, the strong absorption of p-nitrothiophenol at 410 mµ permits continuous kinetic measurements. Thus, it is possible to correlate the intracellular site of action and the biochemical behavior of the esterases. The new substrates are the thiol analogues of the p-nitrophenyl esters frequently employed as esterase substrates. The rates of hydrolysis of the two series of esters are compared in vitro. During tissue fractionation, most of the esterase activity sediments with a particulate fraction. The effects of a number of common esterase inhibitors, such as diisopropyl phosphorofluoridate and eserine sulfate, are examined, and the effects of enzyme concentration and heat inactivation are shown with the use of the partially purified preparations. The cytochemical work shows that the esterase activity is most prominent in the lamellar bodies of the giant alveolar (type II, septal, or granular pneumatocyte) cells of the lung and to a lesser extent in squamous (type I, or membranous pneumatocyte) epithelial and endothelial cells. In both the cytochemical and biochemical studies, the enzymes are inhibited by diisopropyl phosphorofluoridate and phenyl methylsulfonyl fluoride but are insensitive to eserine sulfate.  相似文献   

18.
Suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the influence of various carboxyester compounds on rates of net H+ efflux in the dark or light and photosynthetic O2 production. Addition of 0.15 to 1.5 millimolar malathion, α-naphthyl acetate, phenyl acetate, or p-nitrophenyl acetate stimulated H+ efflux and inhibited photosynthesis within 1 minute. In contrast, the more polar esters methyl acetoacetate or ethyl p-aminobenzoate had little or no effect on either of these two processes. A 0.15 millimolar concentration of α-naphthylacetate stimulated the normal rate of H+ efflux, 0.77 nanomoles H+ per 106 cells per minute by 750% and inhibited photosynthesis by 100%. The four active carboxyester compounds also stimulated H+ efflux after the normal rate of H+ efflux was eliminated with 0.01 milligrams per milliliter oligomycin or 100% N2. Oligomycin reduced the ATP level by 70%. Incubation of cells with malathion, α-naphthyl acetate, or p-nitrophenyl acetate resulted in the generation of the respective hydrolysis products ethanol, α-naphthol, and p-nitrophenol. It is proposed that inhibition of photosynthesis and stimulation of H+ efflux result when nonpolar carboxyester compounds enter the cell and generate acidic carboxyl groups when hydrolyzed by esterase enzymes.  相似文献   

19.
C. Dupuis  C. Corre    P. Boyaval 《Applied microbiology》1993,59(12):4004-4009
The lipase and esterase activities of eight strains of dairy Propionibacterium freudenreichii subsp. freudenreichii were studied. A lipase activity was detected on whole cells and in the culture supernatant. The highest activity was expressed at 45°C and pH 6.8. An esterase activity was also detected in the culture medium. The electrophoresis of the intracellular fractions of the cells revealed from three to six different esterase activities. Two esterases were common to all the strains. The substrate specificity was dependent on each esterase, but no activity was revealed, in our experimental conditions, on ester substrates with a chain length longer than that of butyrate.  相似文献   

20.
Two hundred thirty-two nonfilamentous bacterial strains, including saprophytes, plant pathogens, and opportunistic plant and human pathogens, were screened for the ability to produce cutinases (cutin-degrading esterases). Initially, esterase activity of culture filtrates of strains grown in nutrient broth-yeast extract medium supplemented with 0.4% apple or tomato cutin was determined by a spectrophotometric assay utilizing the model substrate p-nitrophenyl butyrate. The culture filtrates of the 10 Pseudomonas aeruginosa strains tested exhibited the highest esterase activity, with values of >500 nmol/min/ml. Of these 10 strains, 3 (K799, 1499A, and DAR41352) demonstrated significant induction (10-fold or above) of esterase activity by addition of cutin to nutrient broth-yeast extract medium. The ability of culture filtrates of the three strains to cause release of apple cutin monomers was confirmed by a novel high-performance liquid chromatography technique. Monomer identification was confirmed by gas chromatography-mass spectroscopy analyses. Addition of the nonionic detergent n-octylglucoside stimulated cutinase activity of culture filtrates from strains K799 and DAR41352, but not that of filtrates from strain 1499A. Time course studies in nutrient broth-yeast extract medium supplemented with apple cutin indicated maximal levels of cutinase in the culture fluids after cultures entered stationary phase. Incubation temperatures below the optimal temperature for growth (37°C) led to maximal production of cutinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号