首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hearts from severely Cu-deficient rats show a variety of pathological defects, including hypertrophy and, in intact hearts, depression of contractile function. Paradoxically, isolated cardiomyocytes from these rats exhibit enhanced contractile properties. Because hypertrophy and enhanced contractility observed with other pathologies are associated with elevation of insulin-like growth factor-I (IGF)-I, this mechanism was examined for the case of dietary Cu deficiency. Male, weanling Sprague-Dawley rats were provided diets that were deficient (approximately 0.5 mg Cu/kg diet) or adequate (approximately 6 mg Cu/kg diet) in Cu for 5 wk. IGF-I was measured in serum and hearts by an ELISA method, cardiac IGF-I and IGF-II receptors and IGFBP-3 were measured by Western blotting analysis, and mRNAs for cardiac IGF-I and IGF-II were measured by RT-PCR. Contractility of isolated cardiomyocytes was assessed by a video-based edge-detection system. Cu deficiency depressed serum and heart IGF-I and heart IGFBP-3 protein levels and increased cardiac IGF-I receptor protein. Cardiac IGF-II protein and mRNA for cardiac IGF-I and IGF-II were unaffected by Cu deficiency. A Cu deficiency-induced increase in cardiomyocyte contractility, as indicated by increases in maximal velocities of shortening (-dL/dt) and relengthening (+dL/dt) and decrease in time to peak shortening (TPS), was confirmed. These changes were largely inhibited by use of H-1356, an IGF-I receptor blocker. We conclude that enhanced sensitivity to IGF-I, as indicated by an increase in IGF-I receptor protein, accounts for the increased contractility of Cu-deficient cardiomyocytes and may presage cardiac failure.  相似文献   

2.
3.
Insulin-like growth factor (IGF) binding to the type 1 IGF receptor (IGF1R) elicits mitogenic effects, promotion of differentiation and protection from apoptosis. This study has systematically measured IGF1R binding affinities of IGF-I, IGF-II and 14 IGF analogues to a recombinant high-affinity form of the IGF1R using BIAcore technology. The analogues assessed could be divided into two groups: (a) those designed to investigate binding of IGF-binding protein, which exhibited IGF1R-binding affinities similar to those of IGF-I or IGF-II; (b) those generated to probe IGF1R interactions with greatly reduced IGF1R-binding affinities. The relative binding affinities of IGF-I analogues and IGF-I for the IGF1R determined by BIAcore analysis agreed closely with existing data from receptor-binding assays using cells or tissue membranes, demonstrating that BIAcore technology is a powerful tool for measuring affinities of IGFs for IGF1R. In parallel studies, IGF1R-binding affinities were related to ability to protect against serum withdrawal-induced apoptosis in three different assays including Hoechst 33258 staining, cell survival, and DNA fragmentation assays using the rat pheochromocytoma cell line, PC12. In this model system, IGF-I and IGF-II at low nanomolar concentrations are able to prevent apoptosis completely. We conclude that ability to protect against apoptosis is directly related to ability to bind the IGF1R.  相似文献   

4.
Objective: This study explores the synergistic effect of cardiomyoblast apoptosis induced by angiotensin II (Ang II) and Insulin-like growth factor (IGF)-I resistance, and elucidates the role of IGF-II via IGF-II receptor (R) and calcineurin pathways in apoptosis induced by Ang II and IGF-I resistance. Methods: Apoptosis of cultured cardiomyoblast H9c2 cells was assessed by DNA fragmentation on agarose gel electrophoresis, nuclear condensation stained with DAPI, and Western blot analysis of pro-apoptotic Bad and cytochrome c in various combinations of control, Ang II, antisense IGF (I or II), IGF (I or II) antibody, IGF (I or II) receptor (R) antibody, or calcineurin inhibitor (Cyclosporine A, (CsA)). Results: We found the following: (1) The combination of Ang II and IGF-I deficiencies had a synergistic effect on apoptosis, confirmed by DNA fragmentation, nuclei condensation, and increases in such pro-apoptotic proteins as Bad, cytochrome c, caspase 9, and caspase 3 in H9c2 cells. (2) IGF-II and IGF-IIR protein products were increased by antisense IGF-I and IGF-I resistance, but these IGF-II protein products were not affected by sense IGF-I and non-specific antibody IgG in H9c2 cells. (3) The alteration of Bad protein level and the release of cytochrome c, both induced by treatments containing combinations of Ang II and antisense IGF-I, IGF-I antibody or IGF-IR antibody, were inhibited by IGF-II antibody. (4) DNA fragmentation, Bad, and cytochrome c which was induced by treatments combining IGF-IR antibody with Ang II or combining IGF-IR antibody with IGF-II were remarkably attenuated by CsA. Conclusion: IGF-I deficiency and/or IGF-IR resistance induced apoptosis in cardiomyoblast cells. The apoptosis, which might have been caused by the upregulation of IGF-II and IGF-IIR genes possibly activated the downstream calcineurin pathway, was synergistically augmented by Ang II. The last two authors contributed equally.  相似文献   

5.
The insulin-like growth factor (IGF) system plays an important role in cell proliferation and survival. However, more recently, a small number of studies have shown that IGFs induce apoptosis in some cells. Our initial studies showed this occurred in LIM 1215 colon cancer cells but not RD rhabdomyosarcoma cells. IGFs induced both proliferation and apoptosis in LIM 1215 cells, and the induction of apoptosis was dose-dependent. [R54, R55]IGF-II, which binds to the IGF-I receptor with normal affinity but does not bind to the IGF-II receptor, induced apoptosis to the same extent as IGF-II, whereas [L27]IGF-II, which binds to the IGF-I receptor with 1000-fold reduced affinity, had no effect on apoptosis. These results suggest that the IGF-I receptor is involved in induction of apoptosis. Western blot analyses demonstrated that Akt and Erk1/2 were constitutively activated in RD cells. In contrast, phosphorylation of Akt and Erk1/2 were transient and basal expression of Akt protein was lower in LIM 1215 cells. Analysis of apoptosis-related proteins showed that IGFs decreased pro-caspase-3 levels and increased expression of pro-apoptotic Bad in LIM 1215 cells. IGFs co-activate proliferative and apoptotic pathways in LIM 1215 cells, which may contribute to increased cell turnover. Since high turnover correlates with poor prognosis in colorectal cancer, this study provides further evidence for the role of the IGF system in its progression.  相似文献   

6.
IGF-I and IGF-II are thought to be unique in their ability to promote muscle cell differentiation. Murine C2 myoblasts differentiate when placed into low serum media (LSM), accompanied by increased IGF-II and IGF binding protein-5 (IGFBP-5) production. Addition of 20 ng/ml TNF alpha on transfer into LSM blocked differentiation, IGF-II and IGFBP-5 secretion and induced apoptosis. We, therefore, wished to assess whether IGFs could protect against the effects of TNF alpha. Neither inhibition of differentiation or induction of apoptosis was rescued by co-incubation with IGF-I or IGF-II. A lower dose of TNF alpha (1 ng/ml) while not inducing apoptosis still inhibited myoblast differentiation by 56% +/- 12, (P < 0.001), indicating that induction of apoptosis is not the sole mechanism by which TNF alpha inhibits myoblast differentiation. Addition of IGF-I or IGF-II alone reduced differentiation by 49% +/- 15 and 33% +/- 20, respectively, (P < 0.001), although neither induced apoptosis. For muscle cells to differentiate, they must arrest in G0. We established that addition of IGF-I, IGF-II or TNF alpha to the myoblasts promoted proliferation. The myoblasts could not exit the cell cycle as efficiently as controls and differentiation was thus reduced. Unexpectedly, co-incubation of IGF-I or IGF-II with 1 ng/ml TNF alpha enhanced the inhibition of differentiation and induced apoptosis. In the absence of apoptosis we show an association between IGF-induced inhibition of differentiation and increased IGFBP-5 secretion. These results indicate that the effects of the IGFs on muscle may depend on the cytokine environment. In the absence of TNF alpha, the IGFs delay differentiation and promote myoblast proliferation whereas in the presence of TNF alpha the IGFs induce apoptosis.  相似文献   

7.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

8.
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) either inhibit or enhance IGF-stimulated cellular effects. While inhibition occurs by sequestration of IGF from cell-surface receptors, the exact mechanism of IGF-enhancement remains undefined. Human osteoblast-like bone cells in culture secrete several IGF-binding proteins, one of which we have previously identified as IGFBP-5. In this study we purified a 23-kDa IGFBP-5 from cultures of human osteoblast-like cells using ligand affinity chromatography and reversed-phase high performance liquid chromatography and tested its bioactivity in serum-free cultures of normal mouse osteoblast-like cells. Binding studies with radioiodinated IGF showed similar and relatively low affinities for IGF-I and IGF-II consistent with a carboxyl truncated IGF-binding protein. Mitogenic assays demonstrated that the binding protein, when coincubated with IGF-I or -II, enhanced mitogenesis. This enhancement was unique from other binding proteins in not requiring a preincubation period or serum co-factors. Furthermore, the osteoblast-derived IGFBP-5 stimulated mitogenesis in the absence of exogenous or endogenous IGF. Using radioiodinated IGFBP-5 we found that the binding protein could associate with the osteoblast surface, an effect which did not require IGF nor an interaction with IGF receptors. We suggest that osteoblast-derived IGFBP-5 may stimulate osteoblast mitogenesis in at least two ways, by association with IGF and by a second pathway that is independent of IGF receptor activation.  相似文献   

9.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

10.
Insulin-like growth factor (IGF)-II is known to induce hypertrophy of isolated adult rat ventricular cardiomyocytes cultured in the absence of serum. However, it is not known how the growth factor exerts this hypertrophic effect. We show here that IGF-II induces hypertrophy of the cultured cardiomyocytes via two alternative pathways: (1) an IGF-I receptor-dependent pathway, or (2) a lysosome-dependent pathway when the IGF-I receptor-dependent pathway is blocked.  相似文献   

11.
Beating rat hearts were perfused with 125I-IGF-II alone or 125I-IGF-II and unlabeled IGF-II or insulin, then prepared for radioautography. Maximal 125I-IGF-II grain counts over capillaries were decreased in a dose-dependent manner by unlabeled IGF-II but were unaffected by coperfusion with insulin. To determine a potential role for capillary receptors in the transfer of circulating IGF to cardiac muscle, the effects of sequential loss of capillary IGF binding sites was determined. For IGF-I, loss of capillary binding sites by trypsin perfusion was accompanied by proportional decreases in the subsequent appearance of IGF-I in cardiac muscle. In contrast, similar decrements of capillary IGF-II binding did not affect muscle levels of IGF-II. We conclude that capillary endothelium of the intact heart possesses distinct IGF-I and IGF-II binding sites, with the capillary IGF-I binding sites being of potential importance in the transfer of vascular IGF-I to subendothelial cardiac muscle.  相似文献   

12.
Expression of IGF-I, IGF-II, the Type-I IGF receptor and six IGF binding proteins were examined in three different T-ag-driven mouse tumors. Unlike the widespread expression of IGF-II in pancreatic beta-cell tumors, IGF-II was not widely expressed in the two different pituitary tumors examined indicating that a mechanism independent of focal IGF-II expression can also drive T-antigen tumorigenesis. In addition, multiple IGF binding proteins were expressed in all three tumor types. This expression, however, was generally heterogeneous with no specific changes to indicate a required role for any IGF binding protein in T-antigen tumorigenesis.  相似文献   

13.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can stimulate apoptosis and inhibit cell proliferation directly and independently of binding IGFs or indirectly by forming complexes with IGF-I and IGF-II that prevent them from activating the IGF-I receptor to stimulate cell survival and proliferation. To date, IGF-independent actions only have been demonstrated in a limited number of cells that do not synthesize or respond to IGFs. To assess the general importance of IGF-independent mechanisms, we have generated human IGFBP-3 mutants that cannot bind IGF-I or IGF-II by substituting alanine for six residues in the proposed IGF binding site, Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81), and expressing the 6m-hIGFBP-3 mutant construct in Chinese hamster ovary cells. Binding of both IGF-I and IGF-II to 6m-hIGFBP-3 was reduced >80-fold. The nonbinding 6m-hIGFBP-3 mutant still was able to inhibit DNA synthesis in a mink lung epithelial cell line in which inhibition by wild-type hIGFBP-3 previously had been shown to be exclusively IGF-independent. 6m-hIGFBP-3 only can act by IGF-independent mechanisms since it is unable to form complexes with the IGFs that inhibit their action. We next compared the ability of wild-type and 6m-hIGFBP-3 to stimulate apoptosis in serum-deprived PC-3 human prostate cancer cells. PC-3 cells are known to synthesize and respond to IGF-II, so that IGFBP-3 could potentially act by either IGF-dependent or IGF-independent mechanisms. In fact, 6m-hIGFBP-3 stimulated PC-3 cell death and stimulated apoptosis-induced DNA fragmentation to the same extent and with the same concentration dependence as wild-type hIGFBP-3. These results indicate that IGF-independent mechanisms are major contributors to IGFBP-3-induced apoptosis in PC-3 cells and may play a wider role in the antiproliferative and antitumorigenic actions of IGFBP-3.  相似文献   

14.
We have reevaluated IGF binding specificity to membrane receptors in rabbit mammary gland (RMG) and hypophysectomized rat liver (HRL) using recombinant DNA-derived and synthetic analogues of human IGF-I and highly purified IGF-II. SDS-PAGE demonstrated that [125I]IGF-I bound to type-I IGF receptors in RMG; this binding was inhibited in a similar fashion by the IGF-I analogues (IC50 = 10 ng/ml) and to a lesser extent by IGF-II (IC50 = 60 ng/ml). [125I]IGF-II bound to type-II IGF receptors in both RMG and HRL. The IC50 for IGF-II was 9 and 3 ng/ml with RMG and HRL, respectively. At a dose as high as 1 microgram/ml, IGF-I analogues inhibited less than 20% of [125I]IGF-II binding. These results suggest that IGF-I has little or no affinity for type-II IGF receptors.  相似文献   

15.
Insulin-like growth factor (IGF)-I is up-regulated in pancreatic cancer tissues. Pancreatic cancer cell lines were analyzed in serum-free media as a model of the fibrous tissues that these cells often invade. Pancreatic cancer surgical specimens were immunostained with anti-IGF-I receptor (IGF-IR)β antibody. The growth of pancreatic cancer cells in serum-free media was also analyzed. Cell lysates were analyzed for protein by western blot analysis. Cells cultured in the presence of picropodophyllin (PPP), LY294002, or PD98059, were subjected to cell proliferation and scratch assays. In addition, BrdU uptake and apoptosis were analyzed in these cells. IGF-IRβ was detected in pancreatic cancer cells invading fibrous tissues. NOR-P1 grew most rapidly in serum-free media. The concentrations of IGF-I and IGF-II in the media were higher in NOR-P1 than the other cell lines. Cell proliferation in NOR-P1 cells was enhanced by IGF-I or IGF-II treatment more than in MIA-Paca2 or PK-1 cells. PPP, LY294002, and PD98059 suppressed proliferation and motility of NOR-P1 cells and inhibited BrdU uptake, while PPP induced apoptosis. IGF-IRβ may be a potential therapeutic target to inhibit invasion of pancreatic cancer.  相似文献   

16.
The insulin-like growth factors (IGFs), IGF-I and IGF-II, occur in plasma and tissue fluids complexed to specific binding proteins. Although the role of the binding proteins is not completely defined, they are capable of modulating the biological activity of the IGFs. In order to better understand the function of these proteins, we have isolated a clone from the BRL-3A rat liver cell line that encodes a protein corresponding to the IGF binding protein in fetal rat serum. The cDNA clone encodes a precursor protein of 304 amino acids (32,886 daltons), comprised of a 34-residue hydrophobic prepeptide and a 270-residue mature protein (29,564 daltons). The deduced amino acid sequence agrees with the sequence of 173 amino acid residues determined by Edman degradation. The mature protein contains 18 cysteines and no N-glycosylation sites. It contains an Arg-Gly-Asp (RGD) sequence near the carboxyl terminus. A similar sequence is present on many extracellular matrix proteins and contributes to their recognition by cellular adhesion receptors. The cloned cDNA has been transcribed in vitro and the resulting RNA expressed in Xenopus oocytes. Injected oocytes secrete a 33-kDa protein that is immunoprecipitated by polyclonal antibodies to the BRL-3A binding protein and binds IGF-I and IGF-II with the same affinity and specificity as does purified BRL-3A binding protein. The binding protein cDNA probe hybridizes to an approximately 2-kilobase mRNA in BRL-3A cells and in multiple fetal rat tissues including liver, kidney, intestine, and lung. Levels of this mRNA are greatly reduced in the corresponding adult tissues. The rat IGF binding protein is closely related to the partial amino acid sequences reported for a bovine IGF binding protein and more distantly related to a human IGF binding protein that recently has been cloned. No significant homologies were identified to other proteins. Thus, the rat IGF binding protein that we have cloned appears to be a distinct member of a family of related IGF binding proteins. We postulate that the structurally distinct IGF binding proteins may have different biological functions.  相似文献   

17.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The serum-free medium conditioned by the human colon cancer cell line HT-29 contains insulin-like growth factors (IGF) that are entirely complexed to binding proteins (IGF-BP). Gel filtration in acid conditions of the cell-conditioned medium permits separation of IGF-BP from two molecular forms of IGF of 15,000 and 7,500 Mr. As determined by ligand blotting, IGF-BP are heterogeneous and constituted of three molecular forms of 31,000, 28,000, and 26,000 Mr. Using IGF-I and IGF-II radioreceptor assays, IGF-I radioimmunoassay (RIA), and competitive protein-binding assay specific for IGF-II, it is shown that the IGF-type eluting in 15 K and 7.5 K position from gel filtration is restricted to IGF-II. Its concentration is approximately 6 ng/10(6) HT-29 cells with 60% present as a high-molecular-weight form of IGF-II. This large 15 K IGF molecule is devoided of any IGF-binding activity and might represent incomplete processing of pro-IGF-II peptide. By contrast, the level of IGF-I detected by RIA is barely measurable and considered negligible (0.57 pg/10(6) HT-29 cells). Although these IGF-II-like peptides exhibit a growth-promoting activity on FR3T3 fibroblasts, they cannot stimulate, as recombinant IGF-I or IGF-II, 3H-thymidine incorporation into DNA of HT-29 cells, whatever the experimental conditions used. Finally, we have shown that IGF binding is restricted predominantly to the basolateral domain of the cell membrane by using HT-29-D4 clonal cells, derived from the parental HT-29 cell line, maintained in a differentiated state by culture in a medium in which glucose is replaced by galactose.  相似文献   

19.
Expression of the human atrial myosin light chain 1 (hALC-1) in the cardiac ventricle in vivo as well as in primary cultivated adult cardiomyocytes caused a pronounced positive inotropic effect. Therefore, it is one of the most promising candidate gene to treat congestive heart failure (CHF). In this work, we investigated, whether hALC-1 expression also modifies the energetic state of cardiomyocytes. Primary cultivated neonatal rat hearts cells (NRHC) were infected with adenoviral vectors (Ad vectors) containing a hALC-1 cDNA (AdCMV.hALC-1) or a control Ad vector. Infection efficiency of NRHC reached 100% at 50 multiplicity of infection (MOI). Interestingly and in contrast to primary cultures of liver cells, there were no cytotoxic side effects or induction of apoptosis up to MOI 50 in Ad vector infected NRHC. NRHC expressed large amounts of hALC-1 upon infection with AdCMV.hALC-1 which could easily been detected by protein staining and Western blot analysis. Analysis of intracellular hALC-1 localization by double-labeling immunofluorescence of AdCMV.hALC-1 infected cardiomyocytes revealed the typical myofibrillar striation pattern, as well as co-localization of hALC-1 with myosin heavy chains. There was no difference in the oxygen consumption between controls and AdCMV.hALC-1 infected NRHC. These data suggest that first: adenoviral vectors could be used as a safe and effective tool for gene transfer to cardiomyocytes, and second: that a positive inotropic effect of hALC-1 is not associated with enhanced oxygen consumption.  相似文献   

20.
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号