首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-eight hours of sodium depletion by acute cannulation of a parotid duct, via the buccal papilla, in the sheep, resulted in a progressive decrease in salivary secretion rate, salivary, urinary and plasma [Na] and no change in plasma [K]. In the first 24 h of Na depletion water intake was significantly increased. As normal sheep parotid saliva [Na] is higher than plasma [Na] and salivary loss over the first 24 h represented Na loss in excess of water relative to extracellular proportions, increased water intake was not osmotically induced. However, the animals did not replace their water deficit on either of the 2 days of Na depletion. This would appear to be valuable experimental model of increased water intake probably induced by hypovaolaemia, but uncomplicated concurrent osmotic stimuli, or any other factors which might result with the other commonly used experimental stimuli of thirst such as haemorrhage.  相似文献   

2.
ABSTRACT: BACKGROUND: Post-stroke mania is an infrequent complication after stroke, and the mechanisms underlying this disorder remain unclear. Although a contralesional release phenomenon has been implicated in post-stroke mania, empirical findings are lacking. Case Presentation: we preset a case report of post stroke mania. Single photon emission tomography (SPECT) was performed twice, during the manic state and during the remitted euthymic state.The first SPECT study performed during the manic state demonstrated hypoperfusion in the right temporal and frontal regions due to right putaminal hemorrhage. It also showed hyperperfusion in the inferior lateral prefrontal lobe, the temporal lobe, and the medial and lateral parts of the parietal lobe in the left hemisphere. The second SPECT study performed during the euthymic state demonstrated moderate improvement in the hypoperfusion in the right fronto-temporal regions. Furthermore, compared to the findings on the first SPECT study, the second study showed that the focal hyperperfusion in the anterior insular cortex, inferior lateral prefrontal lobes, and superior-middle temporal gyrus in the left hemisphere had vanished. CONCLUSION: Increased left inferior prefrontal and anterior insular activity and reduced extensive right fronto-temporal lobe activity are involved in the development of post-stroke mania.  相似文献   

3.
As early as 0.5-3 h after X-irradiation of rats with a lethal dose of 12 Gy glucocorticoid activity of adrenal cortex was enhanced and 11-oxycorticosteroid level in blood was increased. The increasing of the immunoreactive insulin content of blood was registered at the background of hypercorticoidism and normal function of insular apparatus during the first hours following irradiation. At later times (24-72 h), a stable hypercorticoidism developed, the ability of beta-cells to react adequately to glucose was impaired, and IRI content of blood decreased.  相似文献   

4.
5.
The present study was designed to determine whether acute expansion of the extracellular fluid volume influenced the digitalis-like activity of human cerebrospinal fluid (CSF), previously described by our laboratory. Human CSF samples, drawn before and 30 minutes after the intravenous infusion of 1 liter of either saline or glucose solutions, were assayed for digitalis-like activity by inhibition of either the 86Rb+ uptake into human erythrocytes or by the activity of a purified Na+ - K+ ATPase. The CSF inhibitory activity on both systems significantly increased after the infusion of sodium solutions but did not change after the infusion of glucose. These results indicate that the digitalis-like factor of human CSF might be involved in the regulation of the extracellular fluid volume and electrolyte content and thereby in some of the physiological responses to sodium loading.  相似文献   

6.
Ingestion of an ammonium containing diet produces hyperammonemia and protects rats against acute ammonium intoxication. Acute ammonium toxicity has been attributed to the depletion of energy metabolite intermediates. We show here that hyperammonemia affords considerable protection against depletion of hepatic energy metabolites evoked by ammonium acetate injection. In control rats there were marked decreases in the content of acetoacetate, beta-hydroxybutyrate, ATP, 2-oxoglutarate, lactate, and pyruvate while phosphoenolpyruvate increased markedly. In hyperammonemic rats beta-hydroxybutyrate, ATP, 2-oxoglutarate, and lactate were not significantly affected while pyruvate increased markedly and phosphoenolpyruvate slightly. These results suggest that in controls the activity of pyruvate kinase is inhibited after ammonium injection while in hyperammonemic rats it is not inhibited. The content of alanine (an inhibitor of pyruvate kinase) reached 2.8 mumol/g in controls and 1.6 mumol/g in hyperammonemic rats, 15 min after ammonium injection. This could explain the different effects of ammonium injection on control and hyperammonemic rats.  相似文献   

7.
8.
Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.  相似文献   

9.
The aim of this study was to map areas within the rat insular cortex from which respiratory responses originate and compare those sites with gastrointestinal control regions. The insular cortex was systematically microstimulated and histological location of responsive sites determined. Increased inspiratory airflow and decreased respiratory cycle duration were considered to be respiratory excitatory responses. The responses were localized in dysgranular and agranular insular cortex at levels caudal to the joining of the anterior commissure. More rostrally, respiratory inhibitory responses were elicited: these were manifested as a decrease in inspiratory airflow without a significant alteration in respiratory cycle duration. Respiratory inhibitory responses were usually accompanied by changes in gastric motility. These results suggest that the respiratory area in the rat insular cortex consist of two distinct zones which overlap a region modulating the gastrointestinal activity.  相似文献   

10.
Zn(2+) has multiple implications in cellular metabolism, including free radicals metabolism and cell death by apoptosis. In the present study, we examined the role of Zn(2+) in the regulation of apoptosis in cultured rat hepatocytes. The chelation of Zn(2+) by a membrane permeable metal ion chelator, N, N, N', N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), induced apoptosis. Addition of ZnSO(4) prevented TPEN-induced apoptosis. Unlike the effect of TPEN, a membrane impermeable metal ion chelator, diethylenetriamine pentaacetic acid (DTPA), did not induce apoptosis, indicating that chelation of intracellular Zn(2+) was required to trigger apoptosis. Caspase-3-like proteolytic activity, a general biochemical mediator of apoptosis in a variety of cells and tissues, was also activated with the treatment of TPEN but not DTPA. TPEN treatment, but not DTPA, also resulted in the depletion of intracellular reduced glutathione (GSH) but addition of Zn(2+) recovered the GSH level. N-acetyl-L-cysteine (NAC), a thiol antioxidant, prevented TPEN-induced apoptosis. These results taken together suggest that intracellular Zn(2+) interfere with the apoptosis process, possibly through the regulation of cellular redox potential involving GSH.  相似文献   

11.
12.
The effect of colchicine was followed up in the superior cervical ganglion of rats. An increase was observed in the number of autophagocytosis vacuoles in the neurons, especially three and four hours after the intraperitoneal injection of colchicine (0.05 mg/100 g.b.w.). These vacuoles presented very various ultrastructural characters due to their different content and stage of degradation. Their high number is explained by the action of colchicine upon cytoplasmic microtubules, the secondary inhibition of the intracellular movement, and the blockage or reduction of the fusion of primary lysosomes with the autophagic vacuoles, which are continuously formed in the neuron cytoplasms, as well as in other cells.  相似文献   

13.
Bipolar disorder is a chronic and severe mental disorder. Recently, new animal models have emerged to further investigate underlying mechanisms of bipolar disorder such as ouabain-induced hyperactivity in rats. In this study, we investigated the cerebrospinal fluid levels of S100B protein as a putative marker of astrocytic activity in bipolar mania induced by intracerebroventricular administration of ouabain in rats. Ouabain induced a two-fold increase in crossing responses in the open field test and increased 30% the cerebrospinal fluid concentration of S100B, as compared to vehicle group. Our findings reinforce the role of astroglial cells in the pathogenesis of bipolar disorder and S100B protein as a marker of bipolar mania.  相似文献   

14.
Xu T  Wang X  Cao M  Wu X  Yan Y  Fu H  Zhao W  Gong P  Ke K  Gu X 《Journal of molecular histology》2012,43(3):335-342
BAG-1 protein was initially identified as a Bcl-2-binding protein. It was reported to enhance Bcl-2 protection from cell death, suggesting that BAG-1 represents a new type of anti-cell death gene. Moreover, recent study has shown that BAG-1 can enhance the proliferation of neuronal precursor cells, attenuate the growth inhibition induced by siah1. However, its function and expression in the central nervous system lesion are not been understood very well. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of BAG-1 expression in the brain cortex. Double immunofluorescence staining revealed that BAG-1 was co-expressed with NEURON and glial fibrillary acidic protein (GFAP). In addition, we detected that proliferating cell nuclear antigen had the co-localization with GFAP, and BAG-1. All our findings suggested that BAG-1 might involve in the pathophysiology of brain after TBI.  相似文献   

15.
The (Na+,K+)-ATPase activity from the kidney cortex of the Milan hypertensive rat strain (MHS) and the corresponding normotensive control (MNS) was measured both in active solubilized enzyme preparations and in isolated basolateral membrane vesicles. Kinetic analysis of the purified enzyme showed that the Vmax value was significantly higher in MHS rats. The difference between MHS and MNS was not linked to a different number of sodium pumps, but was related to the molecular activity of the enzyme. Using basolateral membrane vesicles, an increased ATP-dependent ouabain-sensitive sodium transport was also demonstrated in MHS rats. These results support the hypothesis that a higher tubular sodium reabsorption may be involved in the pathogenesis of hypertension in this rat strain.  相似文献   

16.
17.
18.
19.
20.
Liu J  Chu YX  Feng J  Wang Y  Zhang QJ  Xu LP 《生理学报》2005,57(1):83-90
采用玻璃微电极在体细胞外记录法,观察了5,7-双羟色胺(5,7-dihydroxytryptamine,5,7-DHT)损毁大鼠中缝背核(dorsalraphenucleus,DRN)后,底丘脑核(subthalamicnucleus,STN)神经元电活动的变化。结果发现,对照组和DRN损毁组大鼠STN神经元的放电频率分别是(6.93±6.55)Hz和(11.27±9.31)Hz,DRN损毁组大鼠的放电频率显著高于对照组(P<0.01)。在对照组大鼠,13%的神经元呈现规则放电,46%为不规则放电,41%为爆发式放电;而在DRN损毁组大鼠,具有规则、不规则和爆发式放电的神经元比例分别为9%、14%和77%,爆发式放电的STN神经元比例明显高于对照组(P<0.01)。结果显示,DRN损毁后大鼠STN神经元的放电频率增高,爆发式放电增多,提示在正常大鼠DRN抑制STN神经元的活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号