首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In atherosclerotic lesions, macrophages are transformed into foam cells accumulating modified low density lipoproteins (LDL) via the scavenger receptor pathway. We have investigated the effects of carboxymethylated beta-1,3-glucan (CMG) on acetylated LDL (AcLDL) metabolism in murine peritoneal macrophages in vitro and upon the clearance of AcLDL by rat liver in vivo. In cultured murine peritoneal macrophages, CMG reduced substantially the AcLDL-induced synthesis of cholesteryl esters, decreased the binding and degradation of [125I]-AcLDL in a dose-dependent manner with complete inhibition at 20–30 nM , but had no effect on the binding and degradation of native [125I]–LDL. In contrast, other polysaccharides studied, namely zymosan, lipopolysaccharide, non-modified glucan and mannan Rhodexman, had a slight effect at concentrations significantly exceeding the concentrations of CMG. [125I]-AcLDL injected intravenously into rats was cleared from the blood with a half-life of 3.7 min. About 56 per cent of the label of injected [125I]-AcLDL was recovered in the liver 15 min after administration. Co-injection of the labelled AcLDL with CMG (25 mg kg?1 b.w.) decreased the rate of AcLDL clearance so that the half-life increased to 6.0 min. Injections of CMG (25 mg kg?1 b.w.) 48 and 24 h before the determination increased the rate of [125I]-AcLDL clearance (with a half-life of about 2.3 min) and increased the uptake of AcLDL by the liver. We suggest that CMG competed with AcLDL for scavenger receptors in vitro and in vivo and repeated CMG injections before the measurements of AcLDL resulted in the induction of scavenger receptor function.  相似文献   

2.
The effects of peroxisome proliferator activated receptors α and γ (PPAR-α and PPAR-γ) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57B1 macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18–24 h after injection and was decreased 5–7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2–3-fold decreased. Addition of NLDL (50 μg/ml) or AcLDL (25 μg/ml) into the incubation medium of activated macrophages induced 9–14-and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-α, or PPAR-γ agonists—9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively—30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 μM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-α, or PPAR-γ agonists inhibited lipid synthesis and induction of cholesteryl ester synthesis in inflammatory macrophages caused by capture of native or modified LDL. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 3, pp. 364–374.  相似文献   

3.
In J774 murine macrophages, chemically oxidized LDL (OxLDL) and biologically oxidized LDL (BioOxLDL) have similar metabolic fates, characterized by a relatively poor degradation when compared with acetylated LDL (AcLDL), and a modest ability to activate acyl-CoA:cholesterol acyltransferase (ACAT) (850 and 754 pmol [14C]oleate/mg cell protein in OxLDL- and BioOxLDL-incubated cells, versus 425 and 7070 pmol [14C]cholesteryl oleate/mg cell protein in control and AcLDL-incubated cells) with a massive increase of cellular free cholesterol. Therefore, OxLDL were used to investigate the cellular processing of oxidatively modified LDL. Binding and fluorescence microscopy studies demonstrated that OxLDL are effectively bound and internalized by macrophages and accumulate in organelles with density properties similar to those of endo/lysosomes. Although the overall metabolism of OxLDL is modestly affected by 100 microM chloroquine, owing to the poor cellular degradation of the substrate, the drug can further depress OxLDL degradation, indicating that this process takes place in an acidic compartment. Failure to detect products of extensive degradation of OxLDL in the medium is due to their relative resistance to enzymatic hydrolysis, as demonstrated also by in vitro experiments with partially purified lysosomal enzymes, rather than to the intracellular accumulation of degradation products (degraded intracellular protein is, at most, 8.5% of total). This sluggish degradation process is not due to a cytotoxic effect since OxLDL do not affect the intracellular processing of other ligands like AcLDL or IgG. The accumulation of OxLDL-derived products within macrophages may elicit cellular responses, the relevance of which in the atherosclerotic process remains to be addressed.  相似文献   

4.
Cholesterol-laden macrophages are the hallmark of atherogenesis. The class B scavenger receptor, CD36, binds oxidized low density lipoprotein (OxLDL), is found in atherosclerotic lesions, and is upregulated by OxLDL. We tested the effects of alpha-tocopherol (AT) enrichment of human monocyte-derived macrophages on CD36 expression and cholesteryl ester accumulation. Monocytes isolated from normal volunteers were cultured into macrophages. Macrophages were enriched overnight with various doses of AT (25, 50, and 100 microM). LDL from normal volunteers was oxidized or acetylated (AcLDL) and incubated with macrophages for 48 h at a concentration of 50 or 100 microg/ml. CD36 expression was assessed by flow cytometry. Quantitative analysis of scavenger receptor class A (SR-A) activity was performed with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled LDL. CD36 expression was maximal after 8;-10 days of culture. AT (> or =50 microM) significantly decreased CD36 expression upregulated by OxLDL and AcLDL (P < 0.01). Other antioxidants (beta- or gamma-tocopherol) or protein kinase C inhibitors failed to decrease CD36 expression. Concomitantly, DiI-AcLDL and DiI-OxLDL uptake was significantly decreased after AT treatment (P < 0.001). Cholesteryl ester accumulation was significantly decreased after AT enrichment (AcLDL + AT, 77% inhibition; OxLDL + AT, 42% inhibition). In conclusion, AT decreases both CD36 and SR-A expression and cholesteryl ester accumulation in human macrophages. This provides additional scientific support for the antiatherogenic properties of AT.  相似文献   

5.
The effect of tunicamycin (TM) on the metabolism of acetylated low-density lipoprotein (AcLDL) was examined to determine whether N-linked glycosylation is required for the proper function of the AcLDL pathway. Proteolytic degradation of [125I]-AcLDL was increased twofold in the presence of TM. This did not occur via an increase in total lysosomal enzyme activity or extracellular proteolysis; rather, the rate of uptake of [125I]-AcLDL was increased. The enhanced degradation of AcLDL did not lead to a commensurate increase in the rate of synthesis of cholesteryl oleate. Conversely, the rate of cholesterol esterification was reduced in the presence of TM. The uptake of [125I]-AcLDL was more sensitive to inhibition by chloroquine in TM-treated cells. However, the presence of TM did not affect the ability of chloroquine to inhibit constitutive recycling of AcLDL binding sites. These results suggest that N-linked glycosylation may be involved in the regulation of AcLDL metabolism in J774 cells.  相似文献   

6.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, ≥50?μg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24?h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

7.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, >or=50 microg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24 h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

8.
9.
Conditioned medium from human monocyte-macrophages incubated under various conditions was tested for its ability to stimulate fibrinogen mRNA levels in the hepatoma cell line HepG2. Recombinant human interleukin-6 (IL-6) stimulated fibrinogen mRNA levels 4.4-fold over control levels; this response was blocked by an anti-IL-6 antibody. Conditioned medium from 3-day-cultured monocyte-macrophages produced a slight stimulation of fibrinogen synthesis in HepG2 cells which was enhanced when the monocyte-macrophages had been treated with lipopolysaccharide (LPS). This stimulation was blocked by the anti IL-6 antibody. The cytokines, interleukin-1 (IL-1) and tumour necrosis factor (TNF) were also detected in the conditioned medium from the 3-day-cultured monocyte-macrophages. Monocyte-macrophages were cultured for 17 days and then incubated with acetylated low density lipoprotein (AcLDL) for 48 h. Such cells were 'foamy' in appearance and showed a 4-fold increase in apoE mRNA and a 10 to 50-fold increase in apoE secretion. This increase in apoE production was suppressed by almost a third when cells were coincubated with AcLDL and LPS. Conditioned medium from these 17-day-cultured AcLDL-treated human monocyte-macrophages did not stimulate fibrinogen mRNA synthesis in HepG2 cells, nor did the conditioned medium contain detectable levels of cytokines. These results suggest that cytokine production from foam cells in the atherosclerotic lesion is unlikely to be a major contributing factor in determining the elevated fibrinogen levels seen in the plasma of patients with IHD.  相似文献   

10.
The uptake of native and modified low density lipoprotein (LDL) in foam cells in atherosclerotic tissue was studied in an in vitro perfusion system for rabbit aorta. Experimental atherosclerosis was induced in rabbits by a combination of cholesterol feeding and mechanical injury. The aorta was perfused in an incubation chamber. A trace-label, radioiodinated tyramine-cellobiose, was used to study cellular uptake of lipoproteins. After perfusion, the tissue was digested and cells were isolated by centrifugation in a density gradient. About 40 times more LDL per cell was accumulated in the foam cell fraction than in the smooth muscle cell fraction. When the cellular uptake of LDL and acetylated LDL (AcLDL) was compared, about 4 times more AcLDL than LDL was taken up by the foam cells, suggesting that the scavenger receptor is expressed in these cells. In a competition experiment, the uptake of LDL into foam cells was reduced by 70% when a tenfold excess of AcLDL was added. This experiment suggests that native LDL is taken up by the same mechanism as AcLDL. The accumulation of radiolabeled LDL in plaques and in foam cells was reduced by 30-55% by adding vitamin E (0.1 mg/ml) to the system. These studies show an uptake of LDL by foam cells in the atherosclerotic tissue. Furthermore, these cells seem to express the scavenger receptor. The competition experiment would suggest that native LDL is taken up by the scavenger receptor. The observation that an antioxidant, vitamin E, may decrease this uptake suggests that oxidative modification of LDL is of importance for this process.  相似文献   

11.
Calreticulin and gp96 (GRP94) traffic associated peptides into the major histocompatibility complex class-I cross-presentation pathway of antigen-presenting cells (APCs). Efficient accession of the cross-presentation pathway requires APC receptor-mediated endocytosis of the chaperone/peptide complexes. Previously, scavenger receptor class-A (SRA) was shown to play a substantial role in trafficking gp96 and calreticulin into macrophages, accounting for half of total receptor-mediated uptake. However, the scavenger receptor ligand fucoidin competed the chaperone uptake beyond that accounted for by SRA, indicating that another scavenger receptor(s) may also contribute. Consistent with this hypothesis, we showed that the residual calreticulin uptake into SRA(-/-) macrophages is competed by the scavenger receptor ligand acetylated low density lipoprotein (LDL). We now report that an additional scavenger receptor, SREC-I (scavenger receptor expressed by endothelial cell-I), mediates the endocytosis of calreticulin and gp96. Ectopic expression of SREC-I in Chinese hamster ovary cells yielded chaperone recognition and uptake, and these processes were competed by the inhibitory ligands fucoidin and acetylated (Ac)LDL. Although AcLDL competes for the chaperone interactions with SRA and SREC, we showed that not all of the scavenger receptors, which bind AcLDL, bind calreticulin or gp96. The overexpression of SREC-I in macrophages increased chaperone endocytosis, indicating that SREC-I functions in APCs and that the cytosolic components necessary for the endocytosis of SREC-I and its cargo are present and not limiting in APCs. These data identify a novel class of ligands for SREC-I and provide insight into the mechanisms by which APCs and potentially endothelial cells traffic chaperone/antigen complexes.  相似文献   

12.
J774 macrophages exposed to medium containing cholesterol-rich phospholipid dispersions accumulate cholesteryl ester. Supplementing this medium with 100 micrograms oleate/ml increased cellular cholesteryl ester contents 3-fold. Cell retinyl ester contents increased 8-fold when medium containing retinol dispersed in dimethyl sulfoxide was supplemented with oleate. These increases were not the result of increases in total lipid uptake by the cells but rather of redistribution of cholesterol and retinol into their respective ester pools. Effective oleate concentration of 15-30 micrograms/ml increased cellular retinyl and cholesteryl ester contents. The effective oleate concentration was reduced to 5 micrograms/ml when the fatty acid/albumin molar ratio was increased. The oleate-stimulated increase in cholesterol esterification was blocked by incubating cells with Sandoz 58-035, a specific inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), indicating that the effect of fatty acid exposure is mediated through changes in ACAT activity. When cholesterol or retinol was added to cells which had been exposed to oleate for 24 h to provide a triacylglycerol store, the cellular contents of cholesteryl or retinyl ester were also significantly increased compared to cells not previously exposed to oleate. The oleate-stimulated increase in the esterification of cholesterol and/or retinol was also observed in P388D1 macrophages, human (HepG2) and rat (Fu5AH) hepatomas, human fibroblasts, rabbit aortic smooth muscle cells and MCF-7 breast carcinoma cells. In addition to oleate, a number of other fatty acids increased retinol esterification in J774 macrophages; however, cellular cholesterol esterification in these cells was increased only by unsaturated fatty acids and was inhibited in the presence of saturated fatty acids. Although the cellular uptake of radiolabeled oleate and palmitate was similar, a significant difference in the distribution of these fatty acids among the lipid classes was observed. These data demonstrate that exogenous fatty acids are one factor that regulate cellular cholesteryl and retinyl ester contents in cultured cells.  相似文献   

13.
Oxidized LDL (oxLDL) produced a rapid depletion of intracellular glutathione (GSH) followed by an adaptive increase in J774 A.1 macrophages. OxLDL also induced a transient increase in the levels of gamma-glutamylcysteine synthetase heavy subunit (gamma-GCS-HS), representing the catalytic subunit of the rate-limiting enzyme for de novo GSH synthesis. The induction took place within 3 h, with maximum levels observed by 10 h of treatment. Pretreatment of oxLDL with ebselen inhibited GSH depletion and attenuated the gamma-GCS-HS induction. OxLDL-associated lipid hydroperoxides and their decomposition product aldehydes are two major components thought to account for GSH depletion in macrophages. Ebselen pretreatment had only a minor effect on malondialdehyde levels, whereas peroxide content was essentially abolished, suggesting that oxLDL-associated hydroperoxides may mediate both GSH depletion and gamma-GCS-HS induction. Acetylated LDL (AcLDL) also caused a moderate induction of gamma-GCS-HS protein along with a 30% transient increase in GSH by 3;-6 h, suggesting a minor involvement of scavenger receptor-mediated signaling of GSH synthesis. However, the level of gamma-GCS induction by AcLDL was insufficient to cause a sustained increase in GSH. Macrophages with higher glutathione peroxidase (GPx) activity experienced a more rapid and extensive depletion of GSH when treated with oxLDL under similar conditions, along with greater resistance to oxLDL- or peroxide-induced cytotoxicity. We conclude that oxLDL-associated peroxides are primarily responsible for GSH depletion, creating an oxidizing environment required for gamma-GCS induction and compensatory GSH synthesis. This is facilitated in cells expressing high GPx activity through a rapid depletion of GSH in the face of a peroxide challenge.  相似文献   

14.
Atherosclerosis is a consequence of lipid deposition and foam cell formation in the arterial wall. Macrophage scavenger receptor A II is involved in the uptake of modified low density lipoproteins. It contains an extracellular conserved lysine cluster which has been proposed to form a positively charged groove that interacts with acetylated low density lipoproteins (AcLDL). This study evaluated the role of the murine SRA-II and a lysine mutated SRA-II on AcLDL uptake. Fluorescence labeled AcLDL uptake was quantified using a Laser Scan Cytometer. A significant increase in fluorescence uptake was found in the cells transfected with SRA-II versus those with empty vector. Cells expressing the lysine mutated SRA-II also demonstrated a significant decrease in their uptake of AcLDL. This data supports the concept that the conserved lysine cluster in murine SRA-II is the binding region for AcLDL or contributes to the trimeric structure of SRA-II necessary for AcLDL binding.  相似文献   

15.
The activity of a lysosomal enzyme, alpha-D-mannosidase (EC 3.2.1.24), increased markedly in normal lymphocytes when they were cultured together with fibroblasts from a patient with an inherited deficiency of this enzyme. Cell-to-cell contact was obligatory for this increase in activity, which also required new protein synthesis. The enzyme induced in the co-cultured lymphocytes was a high molecular weight form of alpha-D-mannosidase that was not detected in lymphocytes cultured alone, which had only the low molecular weight mature enzyme. It was this precursor form alone that was directly transferred to the mannosidosis fibroblasts, where it was present initially in organelles of low density. When the culture period was extended the lymphocyte precursor enzyme was transported to the heavy lysosomes in the recipient cells, and correctly processed to the functionally effective mature enzyme.  相似文献   

16.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

17.
After 24 h exposure to 0.1 mM oleate or 0.1 mM palmitate there was a 2- and 1.7-fold increase, respectively, in the incorporation of choline into the lipids of type II pneumocytes. Palmitate increased the labeling of disaturated phosphatidylcholine (PC) from 23.0% of total labeled PC in control cultures to 56.6% and oleate decreased labeling of disaturated PC to 9.4%. The percentage of total cellular radioactivity found in the lipid fraction was also markedly higher in the fatty acid-treated cells (83.3% for oleate and 78.7% for palmitate) than in control cultures (64.0%). Radioactivity in water-soluble choline metabolites was correspondingly lower, with phosphocholine representing more than 95% of the label in both control and experimental cultures. After a 3 h pulse-chase period, oleate and palmitate significantly increased the percentage of total cellular radioactivity in PC and decreased the percentage in phosphocholine. Similar results were obtained by adding melittin (1–2 μg/ml) or phospholipase C (0.05 U/ml) to the culture medium. The stimulation of PC synthesis by fatty acids was demonstrated as early as 1 h after exposure to oleate or palmitate and at all concentrations from 0.025 to 0.25 mM. Cytidylyltransferase activity in total cell homogenates was also enhanced by long-term exposure to fatty acids and short-term addition of fatty acids or phospholipase C and melittin to the culture medium. A similar increase in Cytidylyltransferase activity was found in the 100 000 × g particulate fraction of type II cells exposed to fatty acids, whereas no differences were found between the cytosolic fractions of control and treated cells. These results support the concept that an increase in intracellular level of fatty acids either from an exogenous source or following the activation of endogenous phospholipases regulates PC synthesis in fetal type II pneumocytes.  相似文献   

18.
《The Journal of cell biology》1984,99(4):1266-1274
The sequestration of low-density lipoprotein (LDL) by components of the vascular extracellular matrix has long been recognized as a contributing factor to lipid accumulation during atherogenesis. The effects, however, that components of the extracellular matrix might have on LDL catabolism by scavenger cells have been little investigated. For these purposes we have prepared insoluble complexes of LDL, heparin, fibronectin, and denatured collagen (gelatin) and examined their effects on lipid accumulation, LDL uptake and degradation, and cholesteryl ester synthesis in mouse peritoneal macrophages. The results of these experiments have demonstrated that the cholesteryl ester content of macrophages incubated with a particular suspension of LDL, heparin, fibronectin, and collagen complexes is four- to fivefold that of cells incubated with LDL alone. The uptake of complexes containing 125I-LDL is rapid; however, in contrast to either endocytosed 125I-LDL or 125I-acetyl LDL, the degradation of complex-derived LDL is impaired. In addition, the uptake of complex-derived LDL stimulates the incorporation of [14C]oleic acid into cholesteryl oleate, however, the stimulation was a small fraction of that observed in cells incubated with acetyl LDL. Ultrastructurally, macrophages incubated with LDL, heparin, fibronectin, and collagen complexes did not contain many lipid droplets, but rather their cytoplasm is filled with phagosomes containing material similar in appearance to LDL-matrix complexes. These results indicate that components of the extracellular matrix can alter the catabolism of LDL by scavenger cells, suggesting that they may play a role in cellular lipid accumulation in the atherosclerotic lesion.  相似文献   

19.
Smooth muscle cells (SMC) isolated from bovine aorta or human saphenous vein were cultured and used to study the putative effect of recombinant human tumor necrosis factor (TNF) on lipid metabolism in vascular cells. Addition of TNF to the culture medium for 24-48 h resulted in an increase of [3H]oleic acid uptake and esterification into lipids. The effect could be seen already with 0.3 ng/ml and was maximal with 30 ng/ml. The effect of TNF was mainly on the incorporation of [3H]oleic acid into triacylglycerol which increased by 140% in the bovine cells. There was also a significant increase in [3H]cholesteryl ester. In the human SMC there was a 40% increase in [3H]oleic acid into total lipids, while the rise in [3H]triacylglycerol ranged between 60-90%. TNF did not modulate cellular triacyglycerol synthesis in cultured mouse peritoneal macrophages. Since TNF was shown to be synthesized and secreted not only by macrophages but also by smooth muscle cells, it could play an autocrine role in lipid metabolism during development of atherosclerotic lesions. The cellular population of the lesions, i.e., predominance of macrophages or smooth muscle cells, could determine the relative proportion of triacylglycerol accumulation.  相似文献   

20.
Atherogenesis and inflammation are dependent on macrophage function. Signalling pathways are involved in the modulation of the classical low density lipopotein (LDL)-receptor and scavenger receptors activities, which are both expressed by macrophages. This study has evaluated the role of activation of the protein kinase A and C pathways in human macrophages on the metabolism of lipid carried by native, acetylated and oxidised LDL. We found that [3H]oleate incorporation into cholesteryl ester and triacylglycerol is increased by an analogue of cAMP, but strongly inhibited by treatment with phorbol ester (PMA) (100 nM, 6 h) in the presence of acLDL and oxLDL and, to a lesser extent, nLDL. The mechanisms underlying the effects of the phorbol ester were investigated further. The protein kinase C inhibitors, calphostin C and herbimycin A, prevented the PMA-mediated inhibition of cholesterol esterification. PMA also reduced [14C]acetate incorporation into newly synthesised lipids especially in the presence of nLDL, and reduced the uptake of cholesterol carried by modified LDL. Furthermore, the effects of PMA were not modified by inhibition of proteases activities, ruling out the hypothesis that CD163, a scavenger receptor which is shed by the cell surface in the presence of phorbol, is involved in the phorbol-induced reduction of cholesterol accumulation in macrophages in response to LDL. We conclude that binding of modified LDL to macrophages induces an appropriate pattern of scavenger receptor phosphorylation which, in turn, determines the optimal receptor internalisation process. PMA activates PKC pathways and prevents the optimal ligand-induced phosphorylation of the receptors, compromising the processes of degradation of modified LDL. The data also suggest that this mechanism may be related to the decreased uptake by activated macrophages of lipid carried by modified lipoproteins during the early phases of inflammation (284).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号