首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.  相似文献   

2.
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used.  相似文献   

3.
Here we report that the bacterial catabolism of 4-hydroxy-3,5-dimethylbenzoic acid 1 takes a different course inRhodococcus rhodochrousN75 andPseudomonassp. strain HH35. The former organism accumulates a degradation metabolite of the acid which we isolated and identified as 2,6-dimethylhydroquinone 2. The latter bacterial strain converts the acid and the hydroquinone into a dead-end metabolite. This novel compound was characterised unequivocally by mass spectrometry and1H and13C NMR and UV spectroscopy as 4-acetonyl-4-hydroxy-2-methylbut-2-en-1,4-olide 4, a cyclic tautomer of (3-methylmaleyl)acetone, which exists as the enol carboxylate form 3 in aqueous solution.  相似文献   

4.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17β-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17β-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17β-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17β-estradiol into substances without estrogenic activity.  相似文献   

5.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

6.
The cells of Rhodococcus opacus 412 and R. rhodnii 135 were adapted to phenanthrene and anthracene on a solid mineral medium. Preliminary adaptation of the strains accelerated the metabolism of polyaromatic hydrocarbons and provided for the ability of microorganisms to grow on pheanthrene as a sole carbon and energy source in a liquid mineral medium. It was shown that phenanthrene was mineralized by the strains through 7,8-benzocoumarin, 1-hydroxy-2-naphthoaldehyde, 1-hydroxy-2-naphthoic acid, salicylaldehyde, salicylate and catechol to the intermediates of tricarbonic acid cycle and partially transformed with the accumulation of the products of subsequent monooxygenation (3-hydroxyphenanthrene and phenanthrene dihydroxylated not in ortho-position). As a result of the adaptation of the strains to anthracene on a solid mineral medium, the obtained variant of strain R. opacus 412 was able to transform anthracene in a liquid mineral medium to anthraquinone and 6,7-benzocoumarin.  相似文献   

7.
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from Novosphingobium aromaticivorans are heme monooxygenases that catalyze the hydroxylation of a range of terpenoid compounds. CYP101D1 and CYP101D2 oxidized camphor to 5-exo-hydroxycamphor. CYP101B1 and CYP101C1 oxidized β-ionone to predominantly 3-R-hydroxy-β-ionone and 4-hydroxy-β-ionone, respectively. CYP111A2 oxidized linalool to 8-hydroxylinalool. Physiologically, these CYP enzymes could receive electrons from Arx, a [2Fe-2S] ferredoxin equivalent to putidaredoxin from the CYP101A1 system from Pseudomonas putida. A putative ferredoxin reductase (ArR) in the N. aromaticivorans genome, with high amino acid sequence homology to putidaredoxin reductase, has been over-produced in Escherichia coli and found to support substrate oxidation by these CYP enzymes via Arx with both high activity and coupling of product formation to NADH consumption. The ArR/Arx electron-transport chain has been co-expressed with the CYP enzymes in an E. coli host to provide in vivo whole-cell substrate oxidation systems that could produce up to 6.0 g L−1 of 5-exo-hydroxycamphor at rates of up to 64 μM (gram of cell dry weight)−1 min−1. These efficient biocatalytic systems have potential uses in preparative scale whole-cell biotransformations.  相似文献   

8.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway.  相似文献   

9.
Sixty-one strains of alkane-oxidizing bacteria were tested for their ability to oxidize N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide to imidazol-2-yl amino acids applicable for pharmaceutical purposes. After growth with n-alkane, 15 strains formed different imidazol-2-yl amino acids identified by chemical structure analysis (mass and nuclear magnetic resonance spectrometry). High yields of imidazol-2-yl amino acids were produced by the strains Gordonia rubropertincta SBUG 105, Gordonia terrae SBUG 253, Nocardia asteroides SBUG 175, Rhodococcus erythropolis SBUG 251, and Rhodococcus erythropolis SBUG 254. Biotransformation occurred via oxidation of the alkyl side chain and produced 1-acetylamino-4-phenylimidazol-2-yl-6-aminohexanoic acid and the butanoic acid derivative. In addition, the acetylamino group of these products and of the substrate was transformed to an amino group. The product pattern as well as the transformation pathway of N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide differed in the various strains used.  相似文献   

10.
Abstract

To clarify the structures of biotransformation products and metabolic pathways, the biotransformation of monoterpenoids, (+)- and (?)-camphorquinone (1a and b), has been investigated using Aspergillus wentii as a biocatalyst. Compound 1a was converted to (?)-(2S)-exo-hydroxycamphor (2a), (?)-(2S)-endo-hydroxycamphor (3a), (?)-(3S)-exo-hydroxycamphor (4a), (?)-(3S)-endo-hydroxycamphor (5a), and (+)-camphoric acid (6a). Compound 1b was converted to (+)-(2R)-exo-hydroxycamphor (2b), (+)-(2R)-endo-hydroxycamphor (3b), (+)-(3R)-exo-hydroxycamphor (4b), (+)-(3R)-endo-hydroxycamphor (5b), and (?)-camphoric acid (6b). Compound 1a mainly produced 2a (65.0%) with stereoselectivity, whereas 1b afforded 3b (84.3%) with high stereoselectivity. These structures were confirmed by gas chromatography–mass spectrometry, infrared, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. The products illustrate the marked ability of A. wentii for enzymatic oxidation and ketone reduction.  相似文献   

11.
Phytochemical study on the fresh flower of Musa nana Lour. provided seventeen known compounds including two alkaloids, 3-(hydroxyacetyl)-indole (1), bi-indol-3-yl (2), two terpenoids, 5-[(1R)-1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-methyl-, (2Z, 4E) −2, 4-pentadienoic acid (Valdes), 5, 6(S), 7, 7a(R)-tetrahydro-6-hydroxy-4,4-dimethyl-2(4H)-benzofuranone (4), seven phenols (511), three phenylphenalenones, 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one (12), 2-methoxy-9-phenyl-1H-phenalen-1-one (13), 2-methoxy-9-(4-methoxyphenyl)-1H-phenalen-1-one (14), and three lipids (1517). In the present study, all the compounds were isolated for the first time from the species M. nana. Ten compounds including 1-8 and 15-16 have never been previously encountered in the Musaceae family. Furthermore, the chemotaxonomic significance of these isolates was also discussed.  相似文献   

12.
Biotransformation of the highly substituted pyridine derivative 2-amino-4-methyl-3-nitropyridine by Cunninghamella elegans ATCC 26269 yielded three products each with a molecular weight of 169?Da which were identified as 2-amino-5-hydroxy-4-methyl-3-nitropyridine, 2-amino-4-hydroxymethyl-3-nitropyridine, and 2-amino-4-methyl-3-nitropyridine-1-oxide. Biotransformation by Streptomyces antibioticus ATCC 14890 gave two different products each with a molecular weight of 169?Da; one was acid labile and converted to the other stable product under acidic conditions. The structure of the stable product was established as 2-amino-4-methyl-3-nitro-6(1H)-pyridinone, and that of the less stable product was assigned as its tautomer 2-amino-6-hydroxy-4-methyl-3-nitropyridine. Four of the five biotransformation products are new compounds. Several strains of Aspergillus also converted the same substrate to the lactam 2-amino-4-methyl-3-nitro-6(1H)-pyridinone. Microbial hydroxylation by C. elegans was found to be inhibited by sulfate ion. In order to improve the yield and productivity of the 5-hydroxylation reaction by C. elegans, critical process parameters were determined and Design of Experiments (DOE) analyses were performed. Biotransformation by C. elegans was scaled up to 15-l fermentors providing 2-amino-5-hydroxy-4-methyl-3-nitropyridine at ca. 13?% yield in multi-gram levels. A simple isolation process not requiring chromatography was developed to provide purified 2-amino-5-hydroxy-4-methyl-3-nitropyridine of excellent quality.  相似文献   

13.
The cyanobacterium Pseudanabaena sp. FACHB 1277, a 2-methylisoborneol (2-MIB) producer isolated from Xionghe Reservoir, was identified by molecular biological methods based on the 16S rDNA sequence. Pseudanabaena sp. FACHB 1277 is a planktonic freshwater species with relatively high 2-MIB per cell density value (7.76?×?10?6 ng cell?1) and specific growth rate (0.25?±?0.01 d?1). The effects of temperature and light intensity on 2-MIB production of Pseudanabaena sp. FACHB 1277 were investigated. Of the six temperatures tested, 10, 15, 20, 25, 30, and 35 °C, the maximum total 2-MIB per cell density and minimum cell density were observed at 10 °C, while the total 2-MIB and dissolved 2-MIB (including extracellular and dissolved intracellular 2-MIB) increased with increasing temperature. Among the six tested light intensities (10, 25, 40, 55, 70, and 85 μmol photons m?2 s?1), the minimum total 2-MIB per cell density and maximum cell density were observed at 25 μmol photons m?2 s?1. The total 2-MIB and extracellular 2-MIB increased with light intensity increasing from 10 to 40 μmol photons m?2 s?1, while no significant increase was observed when the light intensity was higher than 40 μmol photons m?2 s?1. The maximum intracellular 2-MIB (including dissolved and bound) occurred at 25 μmol photons m?2 s?1. The present study indicates that increasing temperature could favor the conversion of bound intracellular to dissolved 2-MIB, while increasing light intensity stimulates the release of dissolved intracellular 2-MIB into the environment.  相似文献   

14.
In addition to the four cytokinins, 6-(3-methyl-2-butenylamino)purine, 6-methylaminopurine and the cis and trans isomers of 6-(4-hydroxy-3-methyl-2-butenylamino)purine, reported earlier from our laboratories, three cytokinin-active fractions have been obtained from the aqueous medium of 6-day-old Corynebacterium fascians cultures. One of these has been identified as 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine (2-methylthio-cis-zeatin, c-ms2io6 Ade).  相似文献   

15.
The monohydroxycarotenoids formed by diphenylamine-inhibited cultures of Rhodospirillum rubrum have been investigated. Nine have been isolated and identified as 1-hydroxy-1,2-dihydrophytofluene (1), 1-Hydroxy-1,2,7′,8′,11′,12′-hexahydrolycopene (2), chloroxanthin (3), 1-methoxy-1′-hydroxy-1,2,1′,2′-tetrahydrophytofluene (4a), 1′-hydroxy-3,4,1′,2′,11′,12′-hexahydrospheroidene (5, 1′-hydroxy-3,4,1′,2′-tetrahydrospheroidene (6, 1′-hydroxy 1′,2′-dihydrospheroidene (7), rhodovibrin (8a) and monodeme thylated spirilloxanthin (9). 4a, 5 and 6 are novel carotenoids, and a definite structure has been assigned to 2 for the first time; the structure of 1 has been amended. The possible role of these carotenoids in spirilloxanthin biosynthesis is discussed.  相似文献   

16.
Two new neo-clerodane diterpenes, (12S)-6α-acetoxy-4α,18-epoxy-12-hydroxy-19-tigloyloxy-neo-clerod-13-en-15,16-olide (1) and 6α,18-diacetoxy-4α-hydroxy-19-tigloyloxy-neo-clerod-13-en-15,16-olide (2), along with three known analogs (35) have been isolated from the whole plants of Ajuga ciliata Bunge. Their structures were elucidated on the basis of spectroscopic data analyses (IR, ESI-MS, HR-ESI-MS, HMQC, HMBC, COSY, and NOESY). The inhibitory activities on LPS-induced NO production of these diterpenes were evaluated and compounds 1 and 5 showed inhibitory effects.  相似文献   

17.
Three new withanolides have been isolated from hybrids obtained by crossing a chemotype of Withania somnifera received from South Africa and chemotype II originating in Israel. The compounds have been characterized as 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-24-enolide, 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide, and 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2-enolide. The major steroid of the plant is withanolide D, while the other known withanolides present are 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R,24S,25R-witha-2-enolide and withaferin A. The structures assigned to the new compounds are based on spectral evidence, analysis of their fragmentation under electron impact, and on chemical correlation with known compounds. The formation of these withanolides in this new hybrid is discussed briefly.  相似文献   

18.
Cells of the Pseudomonas fluorescens strain C2 containing nitrilase and Rhodococcus ruber strain gt1 with nitrile hydratase activity have been immobilized by the use of adsorption on fibrous carbon materials. It has been shown that the maximum adsorption value of Rhodococcus cells is higher than that in pseudomonades, reaching 21 mg of dry cells/1 g of the carrier vs. 6 mg, respectively. Cell adsorption, compared to cell suspension, gives a significant rise in nitrilase activity (by 7.4 times, using Ural TM-4 as the carrier) and in the stability of nitrile hydratase activity (5 reaction cycles without loss of activity, using Carbopon-B-active). Immobilized biocatalysts were also obtained by cell growth from Ps. fluorescens strain C2 and Rhodococcus ruber strain gt1 on fibrous carbon adsorbents. Biocatalyst productivity was higher for both strains when the carbonized material Ural TM-4 was used as the carrier.  相似文献   

19.
Quinoline catabolism was investigated with different bacterial strains, able to use quinoline as sole source of carbon, nitrogen and energy. Some degradation products of quinoline were isolated from the culture fluids and identified. With Pseudomonas fluorescens and Pseudomonas putida we found 2-oxo-1,2-dihydroquinoline, 8-hydroxy-2-oxo-1,2-dihydroquinoline, 8-hydroxycoumarin and 2,3-dihydroxyphenylpropionic acid as intermediates. With a Rhodococcus strain 2-oxo-1,2-dihydroquinoline, 6-hydroxy-2-oxo-1,2-dihydroquinoline, a red meta-cleavage product and a blue fluorescent compound were isolated. The red compound was identified as 5-hydroxy-6-(3-carboxy-3-oxopropenyl)-1H-2-pyridone. From this the blue fluorescent azacoumarin 2H-pyrano-2-one-[3,2b]-5H-6-pyridone is formed by chemical decomposition. Therefore it can be considered a by-product of quinoline-degradation in Rhodococcus spec. With the present results two different degradation pathways for quinoline in different microorganisms are proposed.  相似文献   

20.
Rhodococcus strains not only have been widely used in industries but also have a potential ability of producing new structural natural products. Integration of heterologous genes into chromosomes of Rhodococcus strains for gene expression can facilitate the studies and applications of these strains. A conjugation system was optimized in order to transfer enhanced green fluorescent protein (EGFP) encoding gene as a reporter from Escherichia coli into Rhodococcus erythropolis D-1. The influence of three native ribosome binding sites (RBSs) and two designed RBSs on the target protein production in R. erythropolis D-1 was also characterized. An efficient conjugation system of R. erythropolis D-1 was established to integrate EGFP gene into its chromosome. Among of five RBSs, RBS3 showed the highest translational activity in R. erythropolis D-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号