首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of the VERNALIZATION1 (VRN1) gene is required for flowering in temperate cereals such as wheat and barley. In varieties that require prolonged exposure to cold to flower (vernalization), VRN1 is expressed at low levels and is induced by vernalization to trigger flowering. In other varieties, deletions or insertions in the first intron of the VRN1 gene are associated with increased VRN1 expression in the absence of cold treatment, reducing or eliminating the requirement for vernalization. To characterize natural variation in VRN1, the first intron of the barley (Hordeum vulgare) VRN1 gene (HvVRN1) was assayed for deletions or insertions in a collection of 1,000 barleys from diverse geographical regions. Ten alleles of HvVRN1 containing deletions or insertions in the first intron were identified, including three alleles that have not been described previously. Different HvVRN1 alleles were associated with differing levels of HvVRN1 expression in non-vernalized plants and with different flowering behaviour. Using overlapping deletions, we delineated regions in the HvVRN1 first intron that are associated with low levels of HvVRN1 expression in non-vernalized plants. Deletion of these intronic regions does not prevent induction of HvVRN1 by cold or the maintenance of increased HvVRN1 expression following cold treatment. We suggest that regions within the first intron of HvVRN1 are required to maintain low levels of HvVRN1 expression prior to winter but act independently of the regulatory mechanisms that mediate induction of HvVRN1 by cold during winter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers 1179825, 1179833, 1179836, 1179858.  相似文献   

2.
The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted “winter type” allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F2 progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel “spring” alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted “winter type” alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F2 populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of “winter vs spring type” alleles at the VRN-H loci.  相似文献   

3.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

4.
The effect of inactivation of the PPX1 and PPN1 genes encoding the yeast exopolyphosphatases on the activities of these enzymes and polyphosphate content in the cytosol of Saccharomyces cerevisiae was studied under Pi deficit and Pi excess in the cultivation medium. Under Pi deficit, exopolyphosphatase activity in strain CRN (with inactivated PPN1 gene) and in the parent strain CRY increased 3- and 1.5-fold, respectively. In the strain CRX (with inactivated PPX1 gene), exopolyphosphatase activity did not change under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by an ~1.7-fold increase of exopolyphosphatase activities in the cytosol preparations of strains CRY, CRX, and CRN. In the cytosol of the double mutant, exopolyphosphatase activity was practically absent under all of the above cultivation conditions. The content of polyphosphates in the cytosol preparations of all strains under study substantially decreased under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by polyphosphate over-accumulation only in the cytosol preparations of stains CRX and CNX, where their levels increased ~1.3 and 3.5-fold, respectively. No over-accumulation was observed in the parent strain CRY and in the PPN1-deficient strain CRN. These data suggest that the exopolyphosphatases encoded by the PPX1 and PPN1 genes are not involved in polyphosphate synthesis.  相似文献   

5.
The prion-like determinant [ISP +] manifests itself as an antisuppressor of certain sup35 mutations. To establish that [ISP +] is indeed a new yeast prion, it is necessary to identify the gene that codes for the protein whose prion form is [ISP +]. Analysis of the transformants obtained by transformation of an [ISP +] strain with an insertion gene library revealed three genes controlling the [ISP +] maintenance: UPF1, UPF2, and SFP1. SFP1 codes for a potentially prionogenic protein, which is enriched in Asn and Gln residues, and is thereby the most likely candidate for the [ISP +] structural gene. UPF1 and UPF2 code for components of nonsense-mediated mRNA decay. The [ISP +] elimination caused by UPF1 and UPF2 inactivation was reversible, and Upf1p and Upf2p were not functionally related to phosphatase Ppz1p, which influences the [ISP +] manifestation. Possible mechanisms sustaining the influence of UPF1 and UPF2 on [ISP +] maintenance are discussed.  相似文献   

6.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pathogen in soybean production worldwide and causes substantial yield losses. An apparent narrow genetic base of SCN resistance was observed in current elite soybean cultivars, and searching for novel SCN resistance genes as well as novel resistance sources rather than focusing on the two important genes rhg1 and Rhg4 has become another major objective in soybean research. In the present paper we report a 1,477 bp Hs1 pro-1 homolog, named GmHs1 pro-1 . This gene was cloned from soybean variety Wenfeng 7 based on information for Hs1 pro-1 , a beet cyst nematode resistance gene in sugar beet. It has two domains, Hs1pro-1_N and Hs1pro-1_C, both of which are believed to confer resistance to nematodes. Of the 1,477 bp sequence in GmHs1 pro-1 , an open reading frame of 1,314 bp, encoding a protein with 437 amino acids, was flanked by a 5′-untranslated region of 27 bp and a 3′-untranslated region of 135 bp. Fourteen single-nucleotide polymorphisms (SNPs) were observed in 44 soybean accessions including 23 wild soybeans, 8 landraces, and 13 soybean varieties (or lines), among which 5 in wild soybeans and 3 in landrace accessions were unique. Sequence diversity analysis on the 44 soybean accessions showed π = 0.00168 and θ = 0.00218 for GmHs1 pro-1 ; landraces had the highest diversity, followed by wild soybeans, with varieties (or lines) having the lowest. Although we did not detect a significant effect of selection on GmHs1 pro-1 in the three populations, sequence diversity, unique SNPs, and phylogenetic analysis indicated a slight domestication bottleneck and an intensive selection bottleneck. High sequence diversity, more unique SNPs, and broader representation across the phylogenetic tree in wild soybeans and landraces indicated that wild collections and landrace accessions are invaluable germplasm for broadening the genetic base of elite soybean varieties resistant to SCN. C. Yuan and G. Zhou contributed to this paper equally.  相似文献   

7.
We have isolated an amphioxus T-box gene that is orthologous to the two vertebrate genes, Tbx1 and Tbx10, and examined its expression pattern during embryonic and early larval development. AmphiTbx1/10 is first expressed in branchial arch endoderm and mesoderm of developing neurulae, and in a bilateral, segmented pattern in the ventral half of newly formed somites. Branchial expression is restricted to the first three branchial arches, and disappears completely by 4 days post fertilization. Ventral somitic expression is restricted to the first 10–12 somites, and is not observed in early larvae except in the most ventral mesoderm of the first three branchial arches. No expression can be detected by 4 days post fertilization. Integrating functional, phylogenetic and expression data from amphioxus and a variety of vertebrate model organisms, we have reconstructed the early evolutionary history of the Tbx1/10 subfamily of genes within the chordate lineage. We conclude that Tbx1/10-mediated branchial arch endoderm and mesoderm patterning functions predated the origin of neural crest, and that ventral somite specification functions predated the origin of vertebrate sclerotome, but that Tbx1 was later co-opted during the evolution of developmental programs regulating branchial neural crest and sclerotome migration.Edited by M. Akam  相似文献   

8.
9.
10.
A single MAT1-2-1 gene was identified from a mating pair of the filamentous ascomycete Colletotrichum lindemuthianum. The MAT1-2-1 genes from both mating partners carried an open reading frame (ORF) of 870 bp encoding a putative protein of 290 amino acids that includes the highly conserved high mobility group (HMG) domain typical of the fungal MAT1-2-1 genes. Three introns were confirmed within the C. lindemuthianum ORF, two of which were found to be conserved relative to a previously reported MAT1-2-1 gene from C. gloeosporioides. The amino acid sequence of the HMG domain from C. lindemuthianum MAT1-2-1 was also compared with those from other ascomycetes. These results suggest that although the MAT1-2-1 genes are highly conserved among ascomycetes, the mechanism which defines mating partners in the genus Colletotrichum is distinct to the idiomorph system described for other members of this phylum.  相似文献   

11.
Gangwar R  Manchanda PK  Mittal RD 《Genetica》2009,136(1):163-169
Identifying risk factors for human cancers should consider combinations of genetic variations and environmental exposures. Several polymorphisms in DNA repair genes have impact on repair and cancer susceptibility. We focused on X-ray repair cross-complementing group 1 (XRCC1), Xeroderma pigmentosum D (XPD) and apurinic/apyrimidinic endonuclease (APE1) as these are most extensively studied in cancer. Present study was conducted to determine distribution of XRCC1 C26304T, G27466A, G23591A, APE1 T2197G and XPD A35931C gene polymorphisms in North Indian population and compare with different populations globally. PCR-based analysis was conducted in 209 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of XRCC1 C26304T were 91.1% C(Arg); G27466A 62.9% G(Arg); G23591A 60.3% G(Arg); APE1 T2197G 75.1% T(Asp) and XPD A35931C 71.8% A(Lys). The variant allele frequency were 8.9% T(Trp) in XRCC1 C26304T; 37.1% A(His) in G27466A; 39.7% A(Gln) in G23591A; 24.9% G(Glu) in APE1 and 28.2% C(Gln) in XPD respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.  相似文献   

12.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

13.
Yu L  Yu X  Shen R  He Y 《Planta》2005,221(2):231-242
  相似文献   

14.
Although arsenic is an infamous carcinogen, it has been effectively used to treat acute promyelocytic leukemia, and can induce cell cycle arrest or apoptosis in human solid tumors. Previously, we had demonstrated that opposing effects of ERK1/2 and JNK on p21 expression in response to arsenic trioxide (As2O3) are mediated through the Sp1 responsive elements of the p21 promoter in A431 cells. Presently, we demonstrate that Sp1, and c-Jun functionally cooperate to activate p21 promoter expression through Sp1 binding sites (−84/−64) by using DNA affinity binding, chromatin immunoprecipitation, and promoter assays. Surprisingly, As2O3-induced c-Jun(Ser63/73) phosphorylation can recruit TGIF/HDAC1 to the Sp1 binding sites and then suppress p21 promoter activation. We suggest that, after As2O3 treatment, the N-terminal domain of c-Jun phosphorylation by JNK recruits TGIF/HDAC1 to the Sp1 sites and then represses p21 expression. That is, TGIF is involved in As2O3-inhibited p21 expression, and then blocks the cell cycle arrest.  相似文献   

15.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F2 families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Jones SE  Demeo JS  Davies NW  Noonan SE  Ross JJ 《Planta》2005,222(3):530-534
The pin1-1 mutant of Arabidopsis thaliana has been pivotal for studies on auxin transport and on the role of auxin in plant development. It was reported previously that when whole shoots were analysed, levels of the major auxin, indole-3-acetic acid (IAA) were dramatically reduced in the mutant, compared with the WT (Okada et al. 1991). The cloning of PIN1, however, provided evidence that this gene encodes a facilitator of auxin efflux, raising the question of how the pin1-1 mutation might reduce overall IAA levels as well as IAA transport. We therefore re-examined IAA levels in individual parts of pin1-1 and WT plants, focusing on inflorescence stems. Our data show that there is in fact no systemic IAA deficiency in the mutant. The previously reported difference between mutant and WT may have been due to the inclusion of reproductive structures in the WT harvest: we show here that the inflorescence itself contains high levels of IAA. We reconcile the normal IAA levels of pin1-1 inflorescence stems with their (previously-reported) reduced ability to transport IAA by presenting evidence that the auxin in mutant stems is not imported from their apical portion. Our data also indicate that levels of another auxin, indole-3-butyric acid (IBA), are very low in stems of the genotypes used in this study.  相似文献   

18.
19.
20.
The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120–250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5′-CAGGGTG-3′) and AT-rich region on the internal bases for ITRs-transposase interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号