首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to evaluate residential short term "spot" measurements as surrogates for long term personal magnetic field (MF) exposure. In an epidemiological study on birth weight and pregnancy delay, MF exposure was assessed by taking five spot measurements in each room. For a subsample of 30 subjects 24 h personal MF measurements were made, and the following exposure metrics were calculated: 24 h arithmetic mean, 24 h median, percentage of time above 0.15 microT, and percentage of time above 0.29 microT. The 24 h exposure metrics were used as gold standards, when evaluating the validity of various summary measures calculated from spot measurements for assessing personal exposure. Based on Spearman correlation coefficient (r), specificity and sensitivity, the average of the spot measurements of a residence resulted in least exposure measurement error (misclassification). Also the above bed spot value correlated better with the 24 h metrics than any room average. Spot measurements performed about equally well in predicting different types of exposure metrics.  相似文献   

2.
Study of the health effects of magnetic fields often depends on identifying determinants and hence indicators of personal exposure. This study identified determinants of children's exposure to magnetic fields and constructed a prediction model for them. For 632 children participating in a case-control study of childhood leukemia, we made direct measures of exposure over 48 h using a portable device, together with observations on candidate determinants. A child's age and sex, the proportion of time spent in the home, and their parents' education or income were very weak predictors of (logged) mean 48 h magnetic field (R(2) < 1%). More important were province (R(2) = 8.0%) and type of residence (R(2) = 11.3%). Low temperatures at the time of measurement were associated with high fields (about 20% increase for each 10 degrees C below 14, R(2) = 4.9%). Several visible attributes of wiring around residences predicted exposure, mostly captured in the Wertheimer-Leeper wire code (R(2) = 13.5%). Stationary 24 h measurement in the bedroom (R(2) = 63.3%) and spot measurements outside the house (R(2) = 40.7%) predicted personal exposures best. Adding other minor predictors increased only slightly variance explained by 24 h stationary (R(2) = 66.2%) and spot (R(2) = 46.8%) measurements. Without spot or stationary measurements, the best model was much less powerful (R(2) = 29.0%). We conclude that spot measurements outside the residence provide a moderately effective basis for estimating exposure for children living there, but do not perform as well as 24 h stationary measurements in the child's bedroom. Although several other easily-observed variables were associated with personal exposure, they were weak determinants, either individually or in combination.  相似文献   

3.
The Electric and Magnetic Field Measurement Project for Utilities—the Electric Power Research Institute (EPRI) Electric and Magnetic Field Digital Exposure (EMDEX) Project (the EPRI EMDEX Project)—was a multifaceted project that entailed technology transfer, measurement protocol design, data management, and exposure assessment analyses. This paper addresses one specific objective of the project: the collection, analysis, and documentation of power-frequency magnetic field exposures for a diverse population of utility workers. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in four countries between September, 1988, and September, 1989. Specially designed sampling procedures and data collection protocols were used to ensure uniform implementation across sites. Volunteers within 13 job classifications recorded which of eight work or three nonwork environments they occupied while wearing an EMDEX meter. Approximately 50,000 hours of magnetic field exposure records taken at 10 s intervals were obtained, about 70% of which were from work environments. Exposures and time spent in environments were analyzed by primary work environment, by occupied environment, and by job classification. Generally, for utility-specific job classifications related to the generation, transmission, and distribution of electricity, the field and exposure measurements in terms of workday mean field were higher than in more general occupations. The job classifications with the highest (median workday mean) exposure were substation operators (0.7 μT) and electricians (0.5μT). Total variance also tended to be largest for utility-specific job classifications. For these workers, the contributions of between-worker and within-worker variances to total variance were about the same. Measurements in utility-specific environments were higher than in more general environments. Estimates of time-integrated exposure indicated that utility-specific job classifications received about one-half or more of their total exposure on the job. The nonwork field and exposure distributions for workers in all job categories were comparable with median nonworkday means of about 0.09 μT. © 1995 Wiley-Liss, Inc.  相似文献   

4.
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    The accurate and valid measurement of personal exposure to magnetic fields poses a major challenge for epidemiologic studies. When considering the various methods to assess exposure, it is unclear which measures are most relevant for studies of human disease, if any. Given these uncertainties, the Electromagnetic Fields and Breast Cancer on Long Island Study (EBCLIS) undertook a pilot study to develop the data collection protocol for a case-control study of breast cancer and magnetic fields. The pilot study used and compared various methods to assess residential exposures to magnetic fields, and related these measures to personal exposures. It included 31 women without breast cancer (mean age, 63+/-7 yr) who lived in their present homes for at least 15 yr. The pilot study consisted of an in-home interview, spot and 24-h magnetic field waveforms and broadband recordings, ground currents, wire coding, and personal 24-h broadband measurements. From the regression analyses, the model that best predicted personal magnetic field exposures included 24-h measurements in the bedroom and in the most lived-in room; as well as ground current test loads taken at the center of this most lived in room (r(2)=86%). The addition of other variables in this regression model yielded only small and nonsignificant increases in r(2). As a direct result of this pilot, EBCLIS will include ground current measurements in its protocol, which have not previously been collected as part of an epidemiologic study. Ground currents may be important because they may be richer in 180 Hz components than are the other currents in a power system. EBCLIS will have the opportunity to examine the ground-current hypothesis in the context of female breast cancer.  相似文献   

    6.
    This study sought to estimate the relative contribution of exposure to 50 Hz magnetic fields experienced at home, at work/school, or elsewhere to the total exposure over 24 hr. Personal exposure meters were carried by 97 adults and children in the Stockholm area. About half of the subjects lived close (<50 m) to a transmission line and half far (>100 m) away. Spot measurements and calculations for the residential exposure were also made. For subjects living<50 m from the line, the exposure at home contributed about 80% of the total magnetic field exposure, measured in mT-hours. Adults living far away experienced only 38% of the total exposure at home, but children still received 55%. Subjects with low time-weighted average (TWA) exposure both at home and at work spent 84% of their time in fields <0.1 microT, and those with high TWA at both locations spent 69% of their time in fields > or = 0.2 microT. This contrast was diluted if only exposure at one location was considered. For spot measurements and calculations of the residential exposure, both sensitivity and specificity was good. However, the intermediate field exposure category (0.1-0.19 microT) showed poor correlation to the 24 hr personal measurements.  相似文献   

    7.
    Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude.  相似文献   

    8.
    Occupational magnetic field (MF) exposure is less thoroughly characterized in occupations typically held by women. Our objective was to characterize occupational 50 Hz MF personal exposure (PE) among female sewing machine operators. We measured the full shift PE of 51 seamstresses, who worked in two shifts (6-14 and 14-22 h) according to their normal work routine. Measurements were conducted using EMDEX PAL meters at chest level. The average duration of the measurement periods was 449 min (range 420-470). The average arithmetic mean exposure for all women was 0.76 microT (range 0.06-4.27). The average of maximum values was 4.30 microT (range 0.55-14.80). Women working with older sewing machines experienced higher exposure than women working on newer sewing machines. For women (n = 10) who operated sewing machines produced in 1990 or earlier, the average arithmetic mean exposure was 2.09 microT, and for women (n = 41) who operated sewing machines produced after 1990, the average arithmetic mean was 0.43 microT. We conclude that women working as sewing machine operators experience higher than average occupational MF exposure compared to other working women. Most important determinant of the women's personal MF exposure was the age of the sewing machine the women operated.  相似文献   

    9.
    Following determination of a concentration of selenate-Se lethal during 24-hr exposures at 22 degrees C, routine oxygen consumption was measured in fathead minnows (Pimephales promelas) exposed to various sublethal concentrations of Se for 24 hr. A median lethal concentration for 24-hr exposures (24-hr LC50) of fathead minnows equalled 82 mg Se/l with 95% fiducial limits of 76-89 mg Se/l. Mean weight-specific oxygen consumption rates of minnows exposed to 0, 15, 40 and 60 mg Se/l for 24-hr ranged from 0.43 to 0.49 mg O2/g-1/hr-1 and were not significantly different. These results indicate that acute exposure to Se does not affect oxygen consumption; however, observations during respirometry trials suggest that minnows at the highest Se concentration may have physiologically compensated to maintain oxygen consumption rates.  相似文献   

    10.
    The aim of our study was to test the feasibility and reliability of personal dosimetry. Twenty-four hour exposure assessment was carried out in 42 children, 57 adolescents, and 64 adults using the Maschek dosimeter prototype. Self-reported exposure to mobile phone frequencies were compared with the dosimetry results. In addition, dosimetry readings of the Maschek device and those of the Antennessa DSP-090 were compared in 40 subjects. Self-reported exposures were not associated with dosimetry readings. The measurement results of the two dosimeters were in moderate agreement (r(Spearman) = 0.35; P = .03). Personal dosimetry for exposure to mobile phone base station might be feasible in epidemiologic studies. However, the consistency seems to be moderate.  相似文献   

    11.
    . We used ultraviolet radiation dosimeters to investigate human exposure at two polar latitudes with a 24-h photoperiod: at Rothera Station (UK) (67°S) and at a field camp in the Haughton impact structure in the Canadian High Arctic (75°N). Mean personal UV radiation exposure in the Antarctic location was 4.3 times greater than that in the Arctic location, even in the absence of ozone depletion. More than zenith angle accounted for the higher UV exposure. Widespread snow and ice covers, and probably less atmospheric pollution, caused higher personal exposures. Although the mean exposures were higher in the Antarctic location, the mean exposure ratio in the Antarctic (0.20ǂ.09) was similar to the value measured in the Arctic (0.27ǂ.09) on clear days. We use the Antarctic ratio to provide quantitative estimates of UV-radiation exposure for workers at the Geographical South Pole for the winter solstice under a constant 24-h photoperiod. Exposure ratios can be used to translate measurements of UV radiation by horizontally fixed spectroradiometers into estimates of the mean exposures expected in populations at polar latitudes, although variations between individuals are large. The data have implications for determining the UV exposures of indigenous high-latitude populations.  相似文献   

    12.
    Transient effects of 100-kV/m extremely low frequency electric fields were studied in the white footed deermouse, Peromyscus leucopus. Gross motor activity, carbon dioxide production, oxygen consumption, and core body temperature were monitored before, during, and after intermittent field exposures (four hour-long exposures, at one-hour intervals). Thirty-four mice were exposed in cages with plastic floors floating above ground potential, and 21 mice were exposed in cages with grounded metal floor plates. The first field exposure produced an immediate, transient increase of activity and gas measures during the inactive phase of the circadian cycle. All measures returned to baseline levels before the second exposure and were not significantly changed throughout the remainder of the exposures. The rapid habituation of field-induced arousal suggests that significant metabolic changes will not be measured in experiments in which the interval between exposure and measurement is greater than two hours.  相似文献   

    13.
    To explore the feasibility of performing an epidemiologic study of female breast cancer and magnetic field (MF) exposures, we chose to study garment workers, who reportedly have some of the highest MF exposures. We collected personal exposure (PE, n = 48) and survey measurements (n = 77) near commercial sewing machines at three garment facilities and conducted a pilot interview among 25 garment workers asking about exposure duration, activities, and machine characteristics. MF levels were higher for older machines with alternating current (AC) than newer machines with direct current (DC) motors. MF levels were comparable for both idling and sewing activities. Most interviewed workers could describe duration of exposure and machine type (automatic/manual), but not other machine characteristics. Measurements were lower than previously reported for garment workers but were higher than exposures to most women. A historical exposure assessment can be conducted by linking duration of exposure with reconstructed exposure measurements but may be limited by the accuracy of work history data.  相似文献   

    14.
    Residential magnetic and electric fields   总被引:1,自引:0,他引:1  
    A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors.  相似文献   

    15.
    The validity of several published investigations of the possibility that residential exposures to 50 Hz or 60 Hz electromagnetic fields might cause adverse psychological effects, such as suicide and depression, may have been limited by inadequate controlling for confounders or inadequate measurement of exposures. We investigated the relationships between magnetic field exposure and psychological and mental health variables while controlling for potential confounders and careful characterising individual magnetic field exposures. Five-hundred-and-forty adults living near transmission lines completed neuropsychological tests in major domains of memory and attentional functioning, mental health rating scales and other questionnaires. Magnetic field measurements were taken in each room occupied for at least one hour per day to provide an estimate of total-time-integrated exposure. The data were subjected to joint multivariate multiple regression analysis to test for a linear relation between field exposure and dependent variables, while controlling for effects of possible confounders. Performance on most memory and attention measures was unrelated to exposure, but significant linear dose-response relationships were found between exposure and some psychological and mental health variables. In particular, higher time-integrated exposure was associated with poorer coding-test performance and more adverse psychiatric symptomatology. These associations were found to be independent of participants' beliefs about effects of electromagnetic fields. Bioelectromagnetics 18:584–594, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    16.
    The MobilEe‐study was the first cross‐sectional population‐based study to investigate possible health effects of mobile communication networks on children using personal dosimetry. Exposure was assessed every second resulting in 86,400 measurements over 24 h for each participant. Therefore, a functional approach to analyze the exposure data was considered appropriate. The aim was to categorize exposure taking into account the course of the measurements over 24 h. The analyses were based on the 480 maxima of each 3 min time interval. Exposure was classified using a nonparametric functional method. Heterogeneity of a sample of functional data was assessed by comparing the functional mode and mean of the distribution of a functional variable. The partition was built within a descending hierarchical method. The resulting exposure groups were compared with categories derived from a standard method, which used the average exposure over 24 h and set the cut‐off at the 90th percentile. The functional classification resulted in a splitting of the exposure data into two groups. Plots of the mean curves showed that the groups could be interpreted as children with “low exposure” (88%) and “higher exposure” (12%). These groups were comparable with categories of the standard method. No association between the categorized exposure and well‐being was observed in logistic regression models. The functional classification approach yielded a plausible partition of the exposure data. The comparability with the standard approach might be due to the data structure and should not be generalized to other exposures. Bioelectromagnetics 30:261–269, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

    17.
    A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

    18.
    Mechanisms to explain disturbance of honey bee colonies under a 765-kV, 60-Hz transmission line [electric (E) field = 7 kV/m] fall into two categories: direct bee perception of enhanced in-hive E fields, and perception of shock from induced currents. The same adverse biological effects previously observed in honey bee colonies exposed under a 765-kV transmission line can be reproduced by exposing worker bees to shock or E field within elongated hive entranceways (= tunnels). Exposure to intense E field caused disturbance only if bees were in contact with a conductive substrate. E-field and shock exposure can be separated and precisely defined within tunnels, eliminating dosimetric vagaries that occur when entire hives are exposed to E field.  相似文献   

    19.
    Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.  相似文献   

    20.
    One barrier to interpreting the observational evidence concerning the adverse health effects of air pollution for public policy purposes is the measurement error inherent in estimates of exposure based on ambient pollutant monitors. Exposure assessment studies have shown that data from monitors at central sites may not adequately represent personal exposure. Thus, the exposure error resulting from using centrally measured data as a surrogate for personal exposure can potentially lead to a bias in estimates of the health effects of air pollution. This paper develops a multi-stage Poisson regression model for evaluating the effects of exposure measurement error on estimates of effects of particulate air pollution on mortality in time-series studies. To implement the model, we have used five validation data sets on personal exposure to PM10. Our goal is to combine data on the associations between ambient concentrations of particulate matter and mortality for a specific location, with the validation data on the association between ambient and personal concentrations of particulate matter at the locations where data have been collected. We use these data in a model to estimate the relative risk of mortality associated with estimated personal-exposure concentrations and make a comparison with the risk of mortality estimated with measurements of ambient concentration alone. We apply this method to data comprising daily mortality counts, ambient concentrations of PM10measured at a central site, and temperature for Baltimore, Maryland from 1987 to 1994. We have selected our home city of Baltimore to illustrate the method; the measurement error correction model is general and can be applied to other appropriate locations.Our approach uses a combination of: (1) a generalized additive model with log link and Poisson error for the mortality-personal-exposure association; (2) a multi-stage linear model to estimate the variability across the five validation data sets in the personal-ambient-exposure association; (3) data augmentation methods to address the uncertainty resulting from the missing personal exposure time series in Baltimore. In the Poisson regression model, we account for smooth seasonal and annual trends in mortality using smoothing splines. Taking into account the heterogeneity across locations in the personal-ambient-exposure relationship, we quantify the degree to which the exposure measurement error biases the results toward the null hypothesis of no effect, and estimate the loss of precision in the estimated health effects due to indirectly estimating personal exposures from ambient measurements.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号