首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizobium japonicum strain SR grows chemoautotrophically on a mineral salts medium when incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow or that grow very poorly chemoautotrophically with H2 have been isolated from strain SR. The mutant isolation procedure involved mutagenesis with ethyl methane sulfonate, penicillin selection under chemoautotrophic growth conditions, and plating of the survivors onto medium containing carbon. The resulting colonies were replica plated onto medium that did not contain carbon, and the plates were incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow under these conditions were chosen. Over 100 mutant strains with defects in chemoautotrophic metabolism were obtained. The phenotypes of the mutants fall into various classes. These include strains unable to oxidize H2 and strains deficient in CO2 uptake. Some of the mutant strains were capable of oxidizing H2 only when artificial electron acceptors were provided. Two mutant strains specifically lack activity of the key CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase. Other mutant strains lack both H2-oxidizing ability and ribulose 1,5-bisphosphate carboxylase activity.  相似文献   

2.
Clostridium magnum, originally described as a non-autotrophic homoacetogenic bacterium, was found to be able to grow with H2/CO2, formate, or methanol with stoichiometric acetate formation, provided that the growth medium contained at least 0.025% (w/v) yeast extract. Hydrogen was also formed as a byproduct of glucose fermentation, and was consumed again after glucose consumption. Hydrogen formation from glucose was independent of growth conditions and reached similar maximal concentrations in mineral media with or without ammonia added as well as in non-growing cultures or in the presence of carbon monoxide.  相似文献   

3.
A mutation in the mch gene, encoding the enzyme 5,10-methenyl tetrahydromethanopterin (H(4)MPT) cyclohydrolase, was constructed in vitro and recombined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri. The resulting mutant does not grow in media using H(2)/CO(2), methanol, or acetate as carbon and energy sources, but does grow in media with methanol/H(2)/CO(2), demonstrating its ability to utilize H(2) as a source of electrons for reduction of methyl groups. Cell suspension experiments showed that methanogenesis from methanol or from H(2)/CO(2) is blocked in the mutant, explaining the lack of growth on these substrates. The corresponding mutation in Methanosarcina acetivorans C2A, which cannot grow on H(2)/CO(2), could not be made in wild-type strains, but could be made in strains carrying a second copy of mch, suggesting that M. acetivorans is incapable of methyl group reduction using H(2). M. acetivorans mch mutants could also be constructed in strains carrying the M. barkeri ech hydrogenase operon, suggesting that the block in the methyl reduction pathway is at the level of H(2) oxidation. Interestingly, the ech-dependent methyl reduction pathway of M. acetivorans involves an electron transport chain distinct from that used by M. barkeri, because M. barkeri ech mutants remain capable of H(2)-dependent methyl reduction.  相似文献   

4.
Azotobacter vinelandii can grow with a variety of organic carbon sources and fix N2 without the need for added H2. However, due to an active H2-oxidizing system, H2-dependent mixotrophic growth in an N-free medium was demonstrated when mannose was provided as the carbon source. There was no appreciable growth with either H2 or mannose alone. Both the growth rate and the cell yield were dependent on the concentrations of both substrates, H2 and mannose. Cultures growing mixotrophically with H2 and mannose consumed approximately 4.8 mmol of O2 and produced 4.6 mmol of CO2 per mmol of mannose consumed. In the absence of H2, less CO2 was produced, less O2 was consumed, and cell growth was negligible. The rate of acetylene reduction in mixotrophic cultures was comparable to the rate in cultures grown in N-free sucrose medium. The rate of [14C]mannose uptake of cultures with H2 was greater than with argon, whereas [14C]sucrose uptake was unaffected by the addition of H2; therefore, the role of H2 in mixotrophic metabolism may be to provide energy for mannose uptake. A. vinelandii is not an autotroph, as attempts to grow the organism chemoautotrophically with H2 or to detect ribulose bisphosphate carboxylase activity were unsuccessful.  相似文献   

5.
The growth of nine strains of Peptococcus saccharolyticus was assessed quantitatively by culture Trypticase Soy/yeast extract/Tween 80 agar (TSY-TW) with and without supplementation with iron or haematin and on blood agar, in aerobic, reduced 02 (3% O2 with 8% CO2, 8% H2 and 81% N2) and anaerobic atmospheres. All strains grew better anaerobically and under reduced O2 conditions than aerobically on supplemented or unsupplemented TSY-TW.Supplementation of TSY-TW with iron or haematin resulted in an average 4.4-fold increase in bacterial count in a reduced O2 atmosphere and an average 4.2-fold increase under anaerobic conditions. Under aerobic conditions the increase in count ranged from O to greater than 5000-fold, as some strains failed to grow on unsupplemented TSY-TW but responded well to the supplements of iron or haematin. The highest bacterial counts were obtained on Columbia blood agar incubated anaerobically. However, P. saccharolyticus failed to grow aerobically on plain or heated Columbia blood agar with or without supplements. TSY-TW blood agar supported the growth of the one strain tested under all three atmospheric conditions. The type strain (ATCC 14953) differed from all others in its failure to grow aerobically or in a reduced O2 atmosphere on supplement or unsupplemented media. Colony size varied greatly on different media, in different atmospheres and from strain to strain, being greatest in a reduced O2 atmosphere on Columbia blood agar. There was no correlation between the viable bacterial count and colony size.  相似文献   

6.
X Wang  H V Modak    F R Tabita 《Journal of bacteriology》1993,175(21):7109-7114
Rhodospirillum rubrum and Rhodobacter sphaeroides were shown to be capable of photolithoautotrophic growth in the absence of the reductive pentose phosphate (Calvin) cycle. Ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strains were incapable of photolithoautotrophic growth using hydrogen as an electron donor but were able to grow in the absence of organic carbon using less reduced inorganic electron donors, i.e., thiosulfate or sulfide. Wild-type R. rubrum grown in the presence of thiosulfate contained RubisCO levels that were 50-fold lower compared with those in cells growth with hydrogen as an electron donor without substantially influencing rates of photolithoautotrophic growth. These results suggest there are two independent CO2 fixation pathways that support photolithoautotrophic growth in purple nonsulfur photosynthetic bacteria, indicating that these organisms have developed sophisticated control mechanisms to regulate the flow of carbon from CO2 through these separate pathways.  相似文献   

7.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

8.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

9.
Influence of corrinoid antagonists on methanogen metabolism.   总被引:11,自引:11,他引:11       下载免费PDF全文
Iodopropane inhibited cell growth and methane production when Methanobacterium thermoautotrophicum, Methanobacterium formicicum, and Methanosarcina barkeri were cultured on H2-CO2. Iodopropane (40 microM) inhibited methanogenesis (30%) and growth (80%) when M. barkeri was cultured mixotrophically on H2-CO2-methanol. The addition of acetate to the medium prevented the observed iodopropane-dependent inhibition of growth. The concentrations of iodopropane that caused 50% inhibition of growth of M. barkeri on either H2-CO2, H2-CO2-methanol, methanol, and acetate were 112 +/- 6, 24 +/- 2, 63 +/- 11, and 4 +/- 1 microM, respectively. Acetate prevented the iodopropane-dependent inhibition of one-carbon metabolism. Cultivation of M. barkeri on H2-CO2-methanol in bright light also inhibited growth and methanogenesis to a greater extent in the absence than in the presence of acetate in the medium. Acetate was the only organic compound examined that prevented iodopropane-dependent inhibition of one-carbon metabolism in M. barkeri. The effect of iodopropane and acetate on the metabolic fates of methanol and carbon dioxide was determined with 14C tracers when M. barkeri was grown mixotrophically on H2-CO2-methanol. The addition of iodopropane decreased the contribution of methanol to methane and cell carbon while increasing the contribution of CO2 to cell carbon. Regardless of iodopropane, acetate addition decreased the contribution of methanol and CO2 to cell carbon without decreasing their contribution to methane. The corrinoid antagonists, light and iodopropane, appeared most specific for methanogen metabolic reactions involved in acetate synthesis from one-carbon compounds and acetate catabolism.  相似文献   

10.
A methanogenic coccus isolated from human feces requires H2 and CH3OH for growth and uses H2 to reduce CH3OH to CH4. Growth does not occur with CH3OH alone. The organism does not grow or produce CH4 from acetate or methylamines without or with H2 or from H2 and CO2 or formate. In a complex medium. CO2 is required for formation of approximately 50% of cell carbon, whereas the methyl carbon from methanol is not incorporated into cell carbon.  相似文献   

11.
Desulfovibrio vulgaris Madison and Thermodesulfobacterium commune contained functionally distinct hydrogenase activities, one which exchanged 3H2 into 3H2O and was inhibited by carbon monoxide and a second activity which produced H2 in the presence of CO. Cell suspensions of D. vulgaris used either lactate, pyruvate, or CO as the electron donor for H2 production in the absence of sulfate. Both sulfidogenic species produced and consumed hydrogen as a trace gas during growth on lactate or pyruvate as electron donors and on thiosulfate or sulfate as electron acceptors. Higher initial levels of hydrogen were detected during growth on lactate-sulfate than on pyruvate-sulfate. D. vulgaris but not T. commune also produced and then consumed CO during growth on organic electron donors and sulfate or thiosulfate. High partial pressures of exogenous H2 inhibited growth and substrate consumption when D. vulgaris was cultured on pyruvate alone but not when it was metabolizing pyruvate plus sulfate or lactate plus sulfate. The data are discussed in relation to supporting two different models for the physiological function of H2 metabolism during growth of sulfidogenic bacteria on organic electron donors plus sulfate. A trace H2 transformation model is proposed for control of redox processes during growth on either pyruvate or lactate plus sulfate, and an obligate H2 cycling model is proposed for chemiosmotic energy coupling during growth on CO plus sulfate.  相似文献   

12.
Although being deionized, filtered and therefore normally deeply oligotrophic, the water from a basin containing irradiating waste presented relatively high bacterial concentrations (ca 10(5) cfu ml(-1)) and biofilm development at its surface and on the walls. This water was characterized by a high concentration of molecular H2 due to water radiolysis, while its electrochemical potential was around +400 mV due the presence of dissolved O2 and active oxygen compounds. This combination of H2 availability and of an oxidant environment is completely original and not described in nature. From surface and wall biofilms, we enumerated the autotrophic populations ( approximately 10(5) bacteria ml(-1)) able to grow in presence of H2 as energy source and CO2 as carbon source, and we isolated the most abundant ones among cultivable bacteria. They efficiently grew on a mineral medium, in the presence of H2, O2 and CO2, the presence of the three gases being indispensable. Two strains were selected and identified using their rrs gene sequence as Ralstonia sp. GGLH002 and Burkholderia sp. GGLH005. In pure culture and using isotope exchange between hydrogen and deuterium, we demonstrated that these strains are able to oxidize hydrogen as energy source, using oxygen as an electron acceptor, and to use carbon dioxide as carbon source. These chemoautotroph hydrogen-oxidizing bacteria probably represent the pioneer bacterial populations in this basin and could be primary producers in the bacterial community.  相似文献   

13.
Importance of carbon dioxide in the isolation of pneumococci   总被引:5,自引:0,他引:5  
Austrian, Robert (The University of Pennsylvania School of Medicine, Philadelphia), and Patricia Collins. Importance of carbon dioxide in the isolation of pneumococci. J. Bacteriol. 92:1281-1284. 1966.-Of the strains of pneumococci isolated from man, 8% manifest a requirement for CO(2) if detectable growth is to occur on the surface of solid media. The pneumococci most frequently manifesting this requirement are types I, III, XVI, XXVIII, and XXXIII. These strains will grow in the presence or absence of oxygen provided the atmosphere in which they are incubated contains CO(2). Review of published data provides no unequivocal evidence for the existence of anaerobic pneumococci.  相似文献   

14.
We screened soil samples for CO(2)-requiring extreme oligotrophs similar to Rhodococcus erythropolis N9T-4, which can grow on a basal salt agar medium without an organic carbon source. From 387 soil samples, three isolates were obtained and identified as Streptomyces spp. by 16S rDNA analysis. The isolates required gaseous CO(2) for growth and grew on a basal salt medium solidified by silica gel. These results suggest that such CO(2)-requiring oligotrophs occur widely in nature.  相似文献   

15.
One hundred five strains of Acinetobacter were isolated from water, soil, and sewage on nonselective complex media, and their nutritional properties were studied. Only one of these strains requires growth factors in order to grow in a mineral medium containing a single carbon source.  相似文献   

16.
Marine Beggiatoa strains MS-81-6 and MS-81-1c are filamentous gliding bacteria that use hydrogen sulfide and thiosulfate as electron donors for chemolithotrophic energy generation. They are known to be capable of chemolithoautotrophic growth in sulfide gradient media; here we report the first successful bulk cultivation of these strains in a defined liquid medium. To investigate their nutritional versatilities, strains MS-81-6 and MS-81-1c were grown in sulfide-oxygen gradient media supplemented with single organic compounds. Respiration rates and biomass production relative to those of controls grown in unsupplemented sulfide-limited media were monitored to determine whether organic compounds were utilized as sources of energy and/or cell carbon. With cells grown in sulfide gradient and liquid media, we showed that strain MS-81-6 strongly regulates two enzymes, the tricarboxylic acid cycle enzyme 2-oxoglutarate dehydrogenase and the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, in response to the presence of organic carbon (acetate) in the growth medium. In contrast, strain MS-81-1c lacked 2-oxoglutarate dehydrogenase activity and regulated ribulose-1,5-bisphosphate carboxylase/oxygenase activity only slightly in response to organic substrates. Tracer experiments with radiolabeled acetate showed that strain MS-81-1c did not oxidize acetate to CO(inf2) but could synthesize approximately 20% of its cell carbon from acetate. On the basis of these results, we conclude that Beggiatoa strain MS-81-1c is an obligate chemolithoautotroph, while strain MS-81-6 is a versatile facultative chemolithoautotroph.  相似文献   

17.
As was shown in experiments with a Hansenula polymorpha culture, a temporary drop in the pH of the medium in response to a pulse addition of a limiting substrate (organic or mineral) is not related to NH4+ uptake from the medium. The response is similar in media with NH4+ and in distilled water without NH4+. The pH drop caused by a pulse addition of certain substrates appears to result from the extrusion of H+ ions in the process of antiport: K+/H+ and Mg2+/H+. It is likely that the response to a substrate pulse is the extrusion of H+ ions for maintaining the membrane potential decreased owing to the uniport of either NH4+ or K+. Protons may be extruded in response to a substrate pulse during glycolysis of respiration. It is possible that an addition of organic substrates activates the metabolism; inorganic ions may also have a stimulating action. The lag time from the moment of substrate addition to the beginning of a decrease in the pH of the medium seems to include transport to the cytoplasmic membrane, transport into the cell and, possibly, the first steps of metabolism of the added substrate.  相似文献   

18.
sra5 mutations in Saccharomyces cerevisiae were previously shown to suppress the inefficient growth of ras2 strains on nonfermentable carbon sources and to result in deficient low-Km cyclic AMP (cAMP) phosphodiesterase activity. We have cloned SRA5 by complementation. It maps to the right arm of chromosome XV, tightly linked to PRT1, and its sequence matches the sequence of PDE2, encoding the low-Km cAMP phosphodiesterase. Disruptions of SRA5 allowed ras1 ras2 strains to grow either on rich media supplemented with cAMP or on minimal media without exogenous cAMP. sra5 strains failed to survive prolonged nitrogen starvation in the presence of exogenous cAMP.  相似文献   

19.
The mutualistic interactions in a 4-aminobenzenesulfonate (sulfanilate) degrading mixed bacterial culture were studied. This coculture consisted of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. In this coculture only strain S1 desaminated sulfanilate to catechol-4-sulfonate, which did not accumulate in the medium but served as growth substrate for strain S2. During growth in batch culture with sulfanilate as sole source of carbon, energy, nitrogen and sulfur, the relative cell numbers (colony forming units) of both strains were almost constant. None of the strains reached a cell number which was more than threefold higher than the cell number of the second strain. A mineral medium with sulfanilate was inoculated with different relative cell numbers of both strains (relative number of colony forming units S1:S2 2200:1 to 1:500). In all cases, growth was found and the proportion of both strains moved towards an about equal value of about 3:1 (strain S1:strain S2). In contrast to the coculture, strain S1 did not grow in a mineral medium in axenic culture with 4-aminobenzenesulfonate or any other simple organic compound tested. A sterile culture supernatant from strain S2 enabled strain S1 to grow with 4-aminobenzenesulfonate. The same growth promoting effect was found after the addition of a combination of 4-aminobenzoate, biotin and vitamin B12. Strain S1 grew with 4-aminobenzenesulfonate plus the three vitamins with about the same growth rate as the mixed culture in a mineral medium. When (resting) cells of strain S1 were incubated in a pure mineral medium with sulfanilate, up to 30% of the oxidized sulfanilate accumulated as catechol-4-sulfonate in the culture medium. In contrast, only minor amounts of catechol-4-sulfonate accumulated when strain S1 was grown with 4ABS in the presence of the vitamins.  相似文献   

20.
Rhodococcus erythropolis N9T-4, which was isolated from crude oil, showed extremely oligotrophic growth and formed its colonies on a minimal salt medium solidified using agar or silica gel without any additional carbon source. N9T-4 did not grow under CO(2)-limiting conditions but could grow on a medium containing NaHCO(3) under the same conditions, suggesting that the oligotrophic growth of N9T-4 depends on CO(2). Proteomic analysis of N9T-4 revealed that two proteins, with molecular masses of 45 and 55 kDa, were highly induced under the oligotrophic conditions. The primary structures of these proteins exhibited striking similarities to those of methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductase and an aldehyde dehydrogenase from Rhodococcus sp. These enzyme activities were three times higher under oligotrophic conditions than under n-tetradecane-containing heterotrophic conditions, and gene disruption for the aldehyde dehydrogenase caused a lack of growth on the minimal salt medium. Furthermore, 3-hexulose 6-phosphate synthase and phospho-3-hexuloisomerase activities, which are key enzymes in the ribulose monophosphate pathway in methylotrophic bacteria, were detected specifically in the cell extract of oligotrophically grown N9T-4. These results suggest that CO(2) fixation involves methanol (formaldehyde) metabolism in the oligotrophic growth of R. erythropolis N9T-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号