首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spell RM  Jinks-Robertson S 《Genetics》2004,168(4):1855-1865
Mutation in SGS1, which encodes the yeast homolog of the human Bloom helicase, or in mismatch repair (MMR) genes confers defects in the suppression of mitotic recombination between similar but nonidentical (homeologous) sequences. Mutational analysis of SGS1 suggests that the helicase activity is required for the suppression of both homologous and homeologous recombination and that the C-terminal 200 amino acids may be required specifically for the suppression of homeologous recombination. To clarify the mechanism by which the Sgs1 helicase enforces the fidelity of recombination, we examined the phenotypes associated with SGS1 deletion in MMR-defective and recombination-defective backgrounds. Deletion of SGS1 caused no additional loss of recombination fidelity above that associated with MMR defects, indicating that the suppression of homeologous recombination by Sgs1 may be dependent on MMR. However, the phenotype of the sgs1 rad51 mutant suggests a MMR-independent role of Sgs1 in the suppression of RAD51-independent recombination. While homologous recombination levels increase in sgs1Delta and in srs2Delta strains, the suppression of homeologous recombination was not relaxed in the srs2 mutant. Thus, although both Sgs1 and Srs2 limit the overall level of mitotic recombination, there are distinct differences in the roles of these helicases with respect to enforcement of recombination fidelity.  相似文献   

2.
Y Bai  A P Davis  L S Symington 《Genetics》1999,153(3):1117-1130
With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.  相似文献   

3.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

4.
A chromosome fragmentation assay was used to measure the efficiency and genetic control of break-induced replication (BIR) in Saccharomyces cerevisiae. Formation of a chromosome fragment by de novo telomere generation at one end of the linear vector and recombination-dependent replication of 100 kb of chromosomal sequences at the other end of the vector occurred at high frequency in wild-type strains. RAD51 was required for more than 95% of BIR events involving a single-end invasion and was essential when two BIR events were required for generation of a chromosome fragment. The similar genetic requirements for BIR and gene conversion suggest a common strand invasion intermediate in these two recombinational repair processes. Mutation of RAD50 or RAD59 conferred no significant defect in BIR in either RAD51 or rad51 strains. RAD52 was shown to be essential for BIR at unique chromosomal sequences, although rare recombination events were detected between the subtelomeric Y' repeats.  相似文献   

5.
Mismatch repair (MMR) proteins repair mispaired DNA bases and have an important role in maintaining the integrity of the genome [1]. Loss of MMR has been correlated with resistance to a variety of DNA-damaging agents, including many anticancer drugs [2]. How loss of MMR leads to resistance is not understood, but is proposed to be due to loss of futile MMR activity and/or replication stalling [3], [4]. We report that inactivation of MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not PMS1) in isogenic strains of Saccharomyces cerevisiae led to increased resistance to the anticancer drugs cisplatin, carboplatin and doxorubicin, but had no effect on sensitivity to ultraviolet C (UVC) radiation. Sensitivity to cisplatin and doxorubicin was increased in mlh1 mutant strains when the MLH1 gene was reintroduced, demonstrating a direct involvement of MMR proteins in sensitivity to these DNA-damaging agents. Inactivation of MLH1, MLH2 or MSH2 had no significant effect, however, on drug sensitivities in the rad52 or rad1 mutant strains that are defective in mitotic recombination and removing unpaired DNA single strands. We propose a model whereby MMR proteins – in addition to their role in DNA-damage recognition – decrease adduct tolerance during DNA replication by modulating the levels of recombination-dependent bypass. This hypothesis is supported by the finding that, in human ovarian tumour cells, loss of hMLH1 correlated with acquisition of cisplatin resistance and increased cisplatin-induced sister chromatid exchange, both of which were reversed by restoration of hMLH1 expression.  相似文献   

6.
Le S  Moore JK  Haber JE  Greider CW 《Genetics》1999,152(1):143-152
Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.  相似文献   

7.
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.  相似文献   

8.
Mott C  Symington LS 《DNA Repair》2011,10(4):408-415
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.  相似文献   

9.
George CM  Lyndaker AM  Alani E 《DNA Repair》2011,10(11):1086-1094
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.  相似文献   

10.
Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence of RAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as with rad51Delta cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1 (RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Delta rad50Delta, rad51Delta rad59Delta, and rad54Delta tid1Delta. These results demonstrate that there is a RAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumably MRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.  相似文献   

11.
The RAD27/RTH1 gene of Saccharomyces cerevisiae encodes a structural and functional homolog of the 5'-3' exonuclease function of Escherichia coli DNA polymerase I. Four alleles of RAD27 were recovered in a screen for hyper-recombination, a phenotype also displayed by polA mutants of E.coli. All four rad27 mutants showed similar high levels of mitotic recombination, but varied in their growth rate at various temperatures, and sensitivity to the DNA damaging agent methyl methane sulfonate. Dependence of viability of rad27 strains on recombination was determined by crossing a strain containing a null allele of RAD27 to strains containing a mutation in either the RAD1, RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11, XRS2 or RAD59 gene. In no case were viable spore products recovered that contained both mutations. Elimination of the non-homologous end-joining pathway did not affect the viability of a rad27 strain. This suggests that lesions generated in the absence of RAD27 must be processed by homologous recombination.  相似文献   

12.
Saccharomyces cerevisiae cells expressing both a- and alpha-mating-type (MAT) genes (termed mating-type heterozygosity) exhibit higher rates of spontaneous recombination and greater radiation resistance than cells expressing only MATa or MATalpha. MAT heterozygosity suppresses recombination defects of four mutations involved in homologous recombination: complete deletions of RAD55 or RAD57, an ATPase-defective Rad51 mutation (rad51-K191R), and a C-terminal truncation of Rad52, rad52-Delta327. We investigated the genetic basis of MAT-dependent suppression of these mutants by deleting genes whose expression is controlled by the Mata1-Matalpha2 repressor and scoring resistance to both campothecin (CPT) and phleomycin. Haploid rad55Delta strains became more damage resistant after deleting genes required for nonhomologous end-joining (NHEJ), a process that is repressed in MATa/MATalpha cells. Surprisingly, NHEJ mutations do not suppress CPT sensitivity of rad51-K191R or rad52-Delta327. However, rad51-K191R is uniquely suppressed by deleting the RME1 gene encoding a repressor of meiosis or its coregulator SIN4; this effect is independent of the meiosis-specific homolog, Dmc1. Sensitivity of rad52-Delta327 to CPT was unexpectedly increased by the MATa/MATalpha-repressed gene YGL193C, emphasizing the complex ways in which MAT regulates homologous recombination. The rad52-Delta327 mutation is suppressed by deleting the prolyl isomerase Fpr3, which is not MAT regulated. rad55Delta is also suppressed by deletion of PST2 and/or YBR052C (RFS1, rad55 suppressor), two members of a three-gene family of flavodoxin-fold proteins that associate in a nonrandom fashion with chromatin. All three recombination-defective mutations are made more sensitive by deletions of Rad6 and of the histone deacetylases Rpd3 and Ume6, although these mutations are not themselves CPT or phleomycin sensitive.  相似文献   

13.
The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway.  相似文献   

14.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

15.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

16.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

17.
In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.  相似文献   

18.
Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G2 checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-D (null) mutant is defective in both S and G2 checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G2 checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1, and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G2 checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G2-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G2 arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.  相似文献   

19.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

20.
A number of studies of Saccharomyces cerevisiae have revealed RAD51-independent recombination events. These include spontaneous and double-strand break-induced recombination between repeated sequences, and capture of a chromosome arm by break-induced replication. Although recombination between inverted repeats is considered to be a conservative intramolecular event, the lack of requirement for RAD51 suggests that repair can also occur by a nonconservative mechanism. We propose a model for RAD51-independent recombination by one-ended strand invasion coupled to DNA synthesis, followed by single-strand annealing. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing and thus was expected to be required for RAD51-independent events by this model. Double-strand break repair between plasmid-borne inverted repeats was less efficient in rad1 rad51 double mutants than in rad1 and rad51 strains. In addition, repair events were delayed and frequently associated with plasmid loss. Furthermore, the repair products recovered from the rad1 rad51 strain were primarily in the crossover configuration, inconsistent with conservative models for mitotic double-strand break repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号