首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Ernst  G Adam 《Cytobiologie》1979,18(3):450-459
Intracellular contents of potassium and of sodium are determined for 3T3 and SV 40-3T3 cells in dependence of growth density. In parallel, total cell volume and volume of intracellular water is determined for these cells suspended in physiological buffer. Intracellular potassium concentration thus evaluated for suspended 3T3 cells exhibits a sharp decrease at cellular growth densities which lead to density dependent inhibition of cell proliferation. In the case of SV 40-3T3 cells, this drop of potassium concentration with increasing cellular growth density is not observed, which correlates well with the absence of cell density dependent inhibition of cell growth in the transformed cell line. These results support the notion that processes of stimulation of quiescent 3T3 cells or of cell density dependent inhibition of their proliferation are mediated by processes including changes of potassium transport characteristics leading to increase or decrease respectively of their intracellular potassium concentration. Furthermore, these and other results suggest, that a difference between normal and transformed cells most relevant to their different proliferation behaviour might reside in different transport characteristics for potassium of the plasma membranes of these cells.  相似文献   

2.
Sparse cultures of Swiss 3T3 cells are arrested early in the G1 phase of growth by the addition of a plasma membrane fraction obtained from confluent 3T3 cells. We have examined whether the changes in solute transport which are usually associated with cessation of growth at confluency also take place when cell growth is arrested by the addition of plasma membranes. We find that the rate of uptake of alpha-aminoisobutyric acid and uridine is decreased after the addition of plasma membranes to 3T3 cells, but the rate of uptake of 2-deoxyglucose and phosphate is not. We conclude from these observations that uptake of uridine and alpha-aminoisobutyric acid are related to contact inhibition of growth, while the decline in the rate of uptake of 2-deoxyglucose and phosphate observed at high cell density must be due to changes other than cell to cell contact.  相似文献   

3.
In the rat skeletal myoblast line L6 and in a rabbit skeletal muscle sarcolemma/t-tubule vesicle preparation, [32P]Pi uptake was largely dependent on the transmembrane Na gradient. Na-dependent [32P]Pi uptake had a hyperbolic relationship to [Pi] and [Na], being half-maximal at 0.2-0.3 mM [Pi] and at 25-40 mM [Na]. In vesicles the Na-dependence suggests that approx. two Na are transported with each Pi, but the inhibition of [32P]Pi uptake at high pH suggests that the Pi monoanion is the transported form. Together these imply electrogenic transport and this is confirmed by the results of manipulating the vesicle membrane potential. Thus, electrogenic Na-Pi co-transport exploits both the sodium gradient and the cell membrane potential to maintain muscle cellular [Pi] against an unfavourable electrochemical gradient. The low [Pi] for half-maximal flux may partly explain the small effect of altered extracellular [Pi] on cellular [Pi]. In L6 myoblasts most 32P was first detectable in an organic phosphate pool rather than cellular Pi, while the specific activity of cell Pi rapidly reached 40% of that of extracellular Pi and was stable for at least 3 h. These results are discussed in terms of the organisation of cellular phosphate metabolism.  相似文献   

4.
Stimulation of postconfluent Swiss 3T3 cells in serum-free medium with 4.3 mM Ca2+ results in marked increases in both released and cell-associated plasminogen activator (PA). Increased release of PA commenced approximately 10 to 12 hours post-stimulation and continued to increase steadily until 48 hours at which time the stimulates cells (4.3 mM Ca2+) released approximately 14 times more PA than control cells (1.8 mM Ca2+). Sr2+, like Ca2+, also stimulates PA synthesis/release either in the presence or in the absence of 1.8 mM Ca2+ whereas an excess of Mg2+ inhibits Ca2+ stimulation. Supranormal [Pi] in the medium stimulates PA synthesis/release in the presence of 1.8 mM mM Ca2+. Further, optimal stimulation by 4.3 mM Ca2+ requires a normal level of Pi (1.0 mM). Elevation of medium [Ca2+] or [Pi] results in an enhanced uptake of Ca2+. The facts that cycloheximide treatment completely abolishes the Ca2+ stimulatory effect and that an increase in cell associated PA precedes release indicate that PA release is coupled to synthesis of new PA. Ca2+ stimulation of PA synthesis/release also requires continuous energy production and RNA as well as protein synthesis. A hypothesis is proposed to explain the relationship between stimulation of PA production and its enhanced release from cells stimulated by elevated [Ca2+] or [Pi] in the media. The possibility that PA release may be an example of the phenomenon of membrane shedding as opposed to secretion is discussed.  相似文献   

5.
Using an established renal epithelial cell line (OK cells) the effect of the amino-acid side-chain modifying reagent N-acetylimidazole (NAI) upon the sodium-dependent transport of phosphate (Pi) was investigated. After an incubation with 10 mM NAI for 20 min, cellular Na+/Pi uptake was inhibited by 70%. The presence of 5 mM Pi protected this transport function from being affected by NAI by 80 to 100%. Since the presence of sulfate was unable to protect the Na+/Pi transport inactivation by NAI and since the presence of Pi did not affect NAI inhibition of other transport systems, it is suggested that NAI interacts with the Pi transporter directly. The protective effect of Pi was used as a criterion to identify Pi-protectable [3H]NAI labelling of OK cell plasma membrane proteins. Pi protection was observed in four molecular mass regions: 31, 53, 104 and 176 kDa. Since the incorporation of [3H]NAI into these proteins was also affected by parathyroid hormone at 10(-10) M, it is concluded that the identified proteins represent possible candidates for the renal Na+/Pi cotransporter.  相似文献   

6.
Orthophosphate (Pi) uptake was examined in human red blood cells at 37 degrees C in media containing physiological concentrations of Pi (1.0- 1.5 mM). Cells were shown to transport Pi by a 4,4'-dinitro stilbene- 2,2'-disulfonate (DNDS) -sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotransport pathway (20%), and a pathway linearly dependent on an extracellular phosphate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/Pi cotransport pathway determined the K1/2 for activation by extracellular Pi ([Na]o = 140 mM) and extracellular Na [( Pi]o = 1.0 mM) to be 304 +/- 24 microM and 139 +/- 8 mM, respectively. The phosphate influx via the cotransport pathway exhibited a Vmax of 0.63 +/- 0.05 mmol Pi (kg Hb)-1(h)-1 at 140 mM Nao. Activation of Pi uptake by Nao gave Hill coefficients that came close to a value of 1.0. The Vmax of the Na/Pi cotransport varied threefold over the examined pH range (6.90-7.75); however, the Na/Pi stoichiometry of 1.73 +/- 0.15 was constant. The membrane transport inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude of the Na/Pi cotransport pathway. No difference was found between the rate of incorporation of extracellular Pi into cytosolic orthophosphate and the rate of incorporation into cytosolic nucleotide phosphates, but the rate of incorporation into other cytosolic organic phosphates was significantly slower. Depletion of intracellular total phosphorus inhibited the incorporation of extracellular Pi into the cytosolic nucleotide compartment; and this inhibition was not reversed by repletion of phosphorus to 75% of control levels. Extracellular 32Pi labeled the membrane-associated compounds that migrate on thin-layer chromatography (TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycerate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phosphate incorporation or on the TLC distribution of Pi in the membrane; however, substitution of extracellular sodium with N-methyl-D-glucamine inhibited phosphorylation of the membranes by 90% and markedly altered the chromatographic pattern of the membrane-associated phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We examined the effect of mouse interferon on the stimulation of [86Rb+] uridine, 2-deoxyglucose and Pi uptake and of ornithine decarboxylase activity produced by serum in quiescent cultures of Swiss 3T3 cells. We found that interferon causes a differential dose-dependent inhibition of the stimulation of ornithine decarboxylase activity and the second phase of Pi uptake. Other protein-synthesis independent or dependent events are not affected.  相似文献   

8.
Benzo[a]pyrene-transformed Balb 3T3 cells (BP3T3) exhibit "normal" growth controls at low concentrations of serum. Epidermal growth factor (EGF) stimulates DNA synthesis and cell division in both Balb 3T3 and BP3T3 cells at physiological concentrations. The growth response of BP3T3 cells to EGF is qualitatively the same as that of 3T3 cells, however, the transformed cells have a lower quantitative requirement. Both 3T3 and BP3T3 cells show a density-dependent response to EGF, but the shift in the dose response curve for BP3T3 cells at high cell density is smaller than that seen for 3T3 cells. One cause of the restricted growth of 3T3 cells at high cell density compared with BP3T3 cells is the increased concentration of growth factor needed for stimulation of 3T3 cells at higher cell densities. A lower rate of depletion of other growth factory by BP3T3 cells may also explain the smaller effect of cell density on the EGF response of these cells.  相似文献   

9.
Bombesin-like neuropeptides, including mammalian gastrin-releasing peptide (GRP), are potent mitogens for Swiss 3T3 cells. In this study, we have characterized the bombesin receptor in membrane preparations from these cells. Addition of Mg2+ during cell homogenization was essential to preserve 125I-GRP binding activity in the resulting membrane preparation. The effect of Mg2+ was concentration dependent, with a maximum at 5 mM. Specific binding of 125I-GRP was saturable; Scatchard analysis indicated a single class of high-affinity sites of Kd = (2.1 +/- 0.3) x 10(-10) M at 15 degrees C and Kd = (1.9 +/- 0.4) x 10(-10) M at 37 degrees C, and a maximum binding capacity of 580 +/- 50 fmol/mg of protein (15 degrees C) or 604 +/- 40 fmol/mg of protein (37 degrees C). The kinetically derived dissociation constant was 1.5 x 10(-10) M. 125I-GRP binding was inhibited in a concentration-dependent manner by various peptides containing the highly conserved C-terminal heptapeptide of the bombesin family, including bombesin, GRP, neuromedin B and the 8-14 fragment of bombesin. In contrast, a variety of structurally unrelated mitogens and neuropeptides had no effect. The cross-linking agent ethyleneglycolbis(succinimidylsuccinate) covalently linked 125I-GRP to a single Mr 75 000-85 000 protein in membrane preparations of 3T3 cells. Affinity labelling of this molecule was specific and dependent on the presence of Mg2+ during membrane preparation. Finally, the non-hydrolysable GTP analogue guanosine-5'-[gamma-thio]triphosphate (GTP[S]) caused a concentration-dependent inhibition of 125I-GRP binding and cross-linking to 3T3 cell membranes [concentration giving half-maximal inhibition (IC50) approximately 0.2 microM]. The inhibitory effect was specific (GMP, ATP or ATP[S] had no effect at 10 microM) and was due to an increase in Kd from (1.7 +/- 0.2) x 10(-10) M to (4.3 +/- 0.6) x 10(-10) M in the presence of 10 microM-GTP[S]. This modulation of ligand affinity and cross-linking implies that the bombesin receptors that mediate mitogenesis in Swiss 3T3 cells are coupled to a guanine-nucleotide-binding-protein signal-transduction pathway.  相似文献   

10.
The aim of the present study was to test simple reaction sequences which describe calcium-independent plus calcium-dependent phosphorylation of sarcoplasmic reticulum transport. ATPase by orthophosphate including the function of magnesium in phosphoenzyme formation. The reaction schemes considered were based on the reaction sequence for calcium-independent phosphorylation proposed previously; namely that the transport enzyme (E) forms a ternary complex (Mg . E . Pi), by random binding of free magnesium and free orthophosphate, which is in equilibrium with the magnesium-phosphoenzyme (Mg . E-P). Phosphorylation, performed at pH 7.0 20 degrees C and a constant free orthophosphate concentration using sarcoplasmic reticulum vesicles either unloaded or loaded passively with calcium in the presence of 5 mM or 40 mM CaCl2, resulted in a gradual decrease in the apparent magnesium half-saturation constant and an increase in maximum phosphoprotein formation with increasing calcium loads. When phosphorylation of sarcoplasmic reticulum vesicles preloaded in the presence of 5 mM CaCl2 was performed at a constant free magnesium concentration, a decrease in the apparent orthophosphate half-saturation constant and an increase in maximum phosphoprotein formation was observed as compared with vesicles from which calcium inside has been removed by ionophore X-537A plus EGTA treatment; however, both parameters remained unchanged by increasing free magnesium from 20 mM to 30 mM. When phosphorylation of sarcoplasmic reticulum vesicles passively loaded with calcium in the presence of 40 mM CaCl2, at which the saturation of the low-affinity calcium binding sites of the ATPase is presumably near maximum, was performed at increasing concentrations of free orthophosphate, there was a parallel shift of phosphoprotein formation as a function of free magnesium and vice versa, with no change in the maximum phosphoenzyme formation. Comparison of the experimental data with the pattern of phosphoprotein formation predicted from model equations for various theoretical possible reaction sequences suggests that phosphoenzyme formation from orthophosphate possesses the following features. Firstly, calcium present at the inside of the sarcoplasmic reticulum membrane binds to the free enzyme and in sequential order to E . Mg . Pi or Mg . E-P or to both, but neither to E. Mg nor to E . Pi. Secondly, calcium-independent and calcium-dependent phosphoproteins are magnesium-phosphoenzymes. Calcium-dependent phosphoenzyme is a magnesium-calcium-enzyme phosphate complex with 1 magnesium, 2 calciums and 1 orthophosphate (the last covalently) bound to the enzyme [Mg . E-P . (Cai)2], and not a 'calcium-phosphoprotein' without bound magnesium.  相似文献   

11.
Osteoblast-like cells possess Na-dependent transporters which accumulate orthophosphate (Pi) from the extracellular medium. This may be important in bone formation. Here we describe parallel measurements of Pi uptake and cellular [Pi] in such cells from the rat (UMR 106–01 and UMR 106–06) and human (OB), and in non-osteoblastic human fibroblasts (Detroit 532 (DET)). In UMR 106–01, cellular [Pi] was weakly dependent on extracellular [Pi] and higher than expected from passive transport alone. [32Pi]-uptake was inhibited by Na deprivation, but paradoxically increased on K deprivation. With Na, 87 per cent of cellular 32P was found in organic phosphorus pools after only 5 min. Na deprivation also decreased cellular [Pi], in both UMR 106–01 and DET, but the decrease was smaller than that in [32Pi]-uptake. Ouabain decreased [32Pi]-uptake and cellular [Pi] in DET, but not in UMR 106–01. Regulation of cellular [Pi] is therefore at least partly dependent on Na/Pi co-transport, but this does not seem to be an exclusive property of osteoblasts.  相似文献   

12.
The multiplication rate of sparse cultures of chick embryo cells is only slightly lower at pH 6.9 than at pH 7.4. There is, however, a marked reduction in the multiplication rate of the pH 6.9 cultures before they reach confluency. Cultures at pH 7.4 continue to multiply beyond confluency with only a slight decrease in the multiplication rate. Eighty to ninety percent of the glucose taken up by the cells growing at each pH is converted to lactic acid which is released into the medium. Metabolic reduction in pH of the medium is almost entirely accounted for by the amount of lactic acid produced by the cells. Neither the intracellular nor extracellular accumulation of lactic acid nor the accompanying reduction in pH is sufficient to explain density dependent inhibition of the rate of multiplication of chick cells. The rate of lactic acid production and the multiplication rate of chick cells are independent of glucose concentration in the range of 2--16 mM. In view of the kinetic parameters for the uptake of glucose, this shows that glycolysis is not limited by the rate of glucose uptake and that depletion of glucose from the medium cannot account for the onset of density dependent inhibition of multiplication. However, when cells reach very high population densities, conventional glucose concentrations of 5 mM can be depleted overnight by chick cells. Since the multiplication rate of cells is dependent on glucose concentration when it falls below 2 mM, depletion of glucose may cause some growth inhibition in crowded cultures supplied with conventional medium.  相似文献   

13.
Bumetanide is a potent inhibitor of cation-chloride co-transport systems in many cell types, including duck red cells. We studied equilibrium binding of [3H]bumetanide to intact duck red cells under a number of conditions known to affect (Na + K + 2Cl) co-transport in these cells. Saturable [3H]bumetanide binding to duck red cells is markedly stimulated by addition of norepinephrine or cell shrinkage, conditions which similarly stimulate co-transport. In the presence of norepinephrine and saturating concentrations of extracellular sodium, potassium, and chloride for the co-transporter, we found approximately 1000 [3H]bumetanide-binding sites/red cell, and measurement of 24Na+ influx on the same cells yielded a turnover number of approximately 4000/s for the co-transporter. 24Na+ influx was negatively correlated with the amount of bound [3H]bumetanide, and both saturable binding and inhibition of influx were half-maximal at approximately 10(-7) M [3H]bumetanide. Binding of [3H]bumetanide to duck red cells is stimulated in a saturable manner by increasing extracellular sodium and potassium. Chloride has a biphasic effect on [3H]bumetanide binding; increasing [Cl-]o (by replacement of methylsulfate) from 0 to 32 mM markedly enhances binding, whereas further increasing [Cl-]o to 160 mM inhibits binding. This behavior is similar to that reported for bumetanide inhibition of duck red cell (Na + K + 2Cl) co-transport (Haas, M., and McManus, T. J. (1983) Am. J. Physiol. 245, C235-C240; Haas, M., and McManus, T. J. (1982) Biophys. J. 37, 214a) and [3H]bumetanide binding to membranes from dog kidney outer medulla (Forbush, B. III, and Palfrey, H. C. (1983) J. Biol. Chem. 258, 11787-11792).  相似文献   

14.
Force (F) and stiffness (K) were measured in glycerinated psoas fibers at various calcium levels with 0, 10, 20, and 30 mM orthophosphate (Pi) added to the bathing solutions. The concentrations of bathing solution constituents were as follows: 110 mM potassium, 40 mM sodium, 4 mM MgATP, 10 mM total EGTA, and variable amounts of MOPS (pH buffer). The pH was 7.0, the ionic strength was 200 mM, and the temperature was 10 degrees C. Calcium levels were established by adding various amounts of CaCl2. All solutions contained 4% Dextran T-500. Fiber K was measured by imposing sinusoidal length changes (0.03-0.1%) at 1 kHz and by applying rapid steps in length and measuring the resulting F changes. At all [Pi] tested, K was more sensitive to calcium than F. Elevating bathing solution [Pi] caused a decrease in the calcium sensitivity of both F and K, while the slopes of F-calcium and K-calcium relations increased. In maximally activating calcium, raising [Pi] caused a continuous decrease in F over the range tested, while from very low to 10 mM Pi K remained constant. Above 10 mM Pi K declined, but to a lesser extent than did F. The results suggest that under our experimental conditions strongly attached crossbridges can exist in both force-producing and non-force-producing states, and that the relative population of these states may be calcium dependent.  相似文献   

15.
Metabolism of polyphosphoinositide was studied in bulk isolated brain cells. Cells were isolated by a rapid method using mechanical disruption followed by molecular seiving and centrifugation. Incorporation of [32Pi]orthophosphate into phosphatidyl inositol-4-phosphate and phosphatidylinositol-4,5 bis-phosphate was optimum at 30 and 60 min, respectively, in the isolated cells. Breakdown studies showed maximum loss of 32Pi after 60 min. Addition of ethanol at and above 10 mM concentration in vitro significantly decreased the incorporation of 32Pi into both phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5 bis-phosphate by the isolated cells. However, the spontaneous breakdown of polyphosphoinositide was not altered in the presence of ethanol in vitro.  相似文献   

16.
C3H10T1/2 mouse embryo cells exhibiting strong contact inhibition of growth at confluency were grown in the presence of 5-bromodeoxyuridine (BrdUrd) or 5-iododeoxyuridine (IdUrd) (0-1.2 microM) with daily refeeding and exposed to gamma-rays (6 Gy) either in the logarithmic or the plateau phase of growth. Sensitization to radiation was observed in both growth states with increasing concentration of BrdUrd or IdUrd but the degree of sensitization achieved was lower for plateau-phase cells. Because the degree of [H3]BrdUrd incorporation was found to be similar in exponentially growing and plateau-phase cells, it is hypothesized that the radiosensitization caused by pyrimidine analogues may be affected by the physiological state of the cells at the time of irradiation. Delayed plating of plateau-phase cells (6 h) caused an increase in survival, indicating repair of potentially lethal damage (PLD). A greater increase in cell survival was observed in cells that had been grown in the presence of BrdUrd and IdUrd and it was found to increase with increasing concentrations. This analogue-concentration dependent PLD repair activity resulted in an almost complete loss of the radiosensitizing effect in delayed plated plateau-phase cells up to a concentration of about 0.6 microM of BrdUrd and IdUrd. Both compounds, but especially BrdUrd, caused a relaxation in the mechanism of contact inhibition and led to higher cell densities in the plateau phase. The results suggest that repair and/or expression of PLD might be involved in the mechanism underlying BrdUrd and IdUrd-mediated radiosensitization and point out the potential importance of PLD repair in the modulation of the radiosensitizing effect of these compounds in their clinical application.  相似文献   

17.
R Barra  B Beres  M R Koch  M A Lea 《Cytobios》1976,17(66):123-136
The effects of exogenous proteins on the incorporation of [3H]-thymidine into DNA was studied in Novikoff hepatoma ascites cells incubated in Eagle's minimal essential medium. A liver cytosol fraction (8 mg protein/ml) caused approximately 80% inhibition of isotope incorporation. The inhibitory activity of cytosol fractions from Morris hepatomas 9618A2, 5123C, and 20 were inversely related to their growth rate. Under conditions in which there appeared to be a density dependent inhibition of growth, a mean 10-20% stimulation of isotope incorporation was observed after addition of total calf thymus histones and individual fractions in the concentration range of 100-400 microgram/ml. In experiments with lower cell concentrations, a 60% or greater increase in [3H]-thymidine incorporation could be obtained with total calf thymus histone and with F1 and arginine-rich histones from rat liver. At concentrations of 1-2 mg/ml, histones inhibited DNA synthesis. Bovine serum albumin had little effect on DNA synthesis. Polylysine caused an 80-90% inhibition at a concentration of 1 mg/ml, but stimulatory effects were detected under certain conditions at 10 microgram/ml. The results suggest critical dependence on the ratio of cell and exogenous protein concentration in the action of proteins on DNA synthesis.  相似文献   

18.
In an effort to determine whether the Na+-dependent Pi transport system of Ehrlich ascites tumor cells exhibits specificity for H2PO4- or HPO4(-2), Pi fluxes were determined by measuring 32Pi-Pi self-exchange. Three experimental approaches were employed. First, the effect of pH on steady-state Pi transport at 0.5 and 5 mM was studied. Second, the relationship between Pi transport and Pi concentration (0.25-9.2 mM) at pH 5.6 and 7.9 was determined. Third, the dependence of Pi transport on [H2PO4-] (0.05-4.2 mM) at constant [HPO4(-2)] (0.5 mM), and the converse, [HPO4(-2)] (0.06-4.5 mM) at constant [H2PO4-] (0.5 mM), was evaluated. Ks (apparent half-saturation constant) and Jmax (maximal transport rate) were calculated by two methods: weighted linear regression (WLR) and a nonparametric procedure. The dependence of Pi flux on pH indicates that optimum transport occurs at pH 6.9. Pi transport decreases as pH is reduced when extracellular Pi is either 0.5 or 5 mM. However, at pH 7.9, Pi flux is reduced only in 0.5 mM Pi. At pH 5.6, H2PO4- comprises 93% of the total Pi present, and the calculated Ks is 0.055 +/- 0.026 mM (WLR). This is the same as the Ks determined from the initial phase of the flux vs. [H2PO4-] relationship (0.056 +/- 0.020 mM). However, at pH 7.9 (where 94% of Pi is HPO4(-2)), the measured Ks is 0.58 +/- 0.11 mM (WLR), which is ten times higher than at pH 5.6. This value is also five times greater than the Ks calculated from the flux vs. [HPO4(-20)] curve (0.106 +/- 0.16 mM). Kinetic parameters calculated by the nonparametric method, though somewhat different, gave similar relative results. Taken together, these results support two conclusions: (1) H2PO4- is the substrate for the Na+-dependent Pi transport system of the Ehrlich cell, and (2) H+ can inhibit Pi transport.  相似文献   

19.
Inorganic phosphate (Pi) uptake by Catharanthus roseus (L.) G. Don cells was studied in relation to its apparent uncontrolled uptake using 31P-nuclear magnetic resonance spectroscopy. Kinetics of Pi uptake by the cells indicated that apparent Km and Vm were about 7 [mu]M and 20 [mu]mol g-1 fresh weight h-1, respectively. Pi uptake in Murashige-Skoog medium under different Pi concentrations and different initial cell densities followed basically the same kinetics. When supplied with abundant Pi, cells absorbed Pi at a constant rate (Vm) for the first hours and accumulated it in the vacuole. As the endogenous pool expanded, the rate of Pi uptake gradually decreased to nil. Maximum Pi accumulation was 100 to 120 [mu]mol g-1 fresh weight if cell swelling during Pi uptake (about 2-fold in cell volume) was not considered. Results indicated that (a) the rate of Pi uptake by Catharanthus cells was independent of initial cell density and was constant over a wide range of Pi concentrations (2 mM to about 10 [mu]M) unless the cells were preloaded with excess Pi, and (b) there was no apparent feedback control over the Pi uptake process in the plasma membrane to avoid Pi toxicity. The importance of the tonoplast Pi transport system in cytoplasmic Pi homeostasis is discussed.  相似文献   

20.
Phelps A  Wohlrab H 《Biochemistry》2004,43(20):6200-6207
The three Cys of the yeast (Saccharomyces cerevisiae) mitochondrial phosphate transport protein (PTP) subunit were replaced with Ser. The seven mutants (single, double, and complete Cys replacements) were expressed in yeast, and the homodimeric mutant PTPs were purified from the mitochondria and reconstituted. The pH gradient-dependent net phosphate (Pi) transport uptake rates (initial conditions: 1 mM [Pi]e, pHe 6.80; 0 mM [Pi]i, pHi 8.07) catalyzed by these reconstituted mutants are similar to those of the wild-type protein and range from 15 to 80 micromol Pi/min mg PTP protein. Aerobic media inhibit only the Pi uptake rates catalyzed by PTPs with the conserved (yeast and bovine) Cys28. This inhibition in the proteoliposomes is 84-95% and can be completely reversed by dithiothreitol. Transport by the wild type as well as by all mutant proteins with Cys28 is more than 90% inhibited by mersalyl. Transport catalyzed by mutant proteins with only Cys300 or only Cys134 is less sensitive, and that catalyzed by the no Cys mutant shows 40% inhibition by mersalyl. When dithiothreitol is removed from purified single Cys mutant proteins, only the mutant protein with Cys28 appears as a homodimer in a nonreducing SDS polyacrylamide gel. Thus, the function relevant transmembrane helix A, with Cys 28 about equidistant from the two inner membrane surfaces, is in close contact with parts of transmembrane helix A of the other subunit in the functional homodimeric PTP. The results identify for the first time not only a transmembrane helix contact site between the two subunits of a homodimeric mitochondrial transport protein but also a contact site that if locked into position blocks transport. The results are related to two available secondary transporter structures (lactose permease, glycerol-3-phosphate transporter) as well as to a low resolution projection structure and a high resolution structure of monomers of inhibitor ADP/ATP carrier complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号