首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The occurrence of Bemisia tabaci poses an increasingly serious threat to cotton and vegetable crops in Xinjiang, China. Currently, neonicotinoid insecticides are commonly used to control the insect, to which resistance is inevitable due to intensive use. However, the resistance status and mechanism of B. tabaci to neonicotinoid insecticides in Xinjiang are poorly understood. Cytochrome P450 monooxygenases represent a key detoxification mechanism in the neonicotinoid resistance of B. tabaci. In this study, the resistance level to imidacloprid and thiamethoxam was investigated using the leaf dipping method in five field populations of B. tabaci from Turpan (TP, two sampling sites), Shache (SC), Hotan (HT) and Yining (YN) in northern and southern Xinjiang. The expression changes of eighteen cytochrome P450 genes from the select B. tabaci populations were determined by real‐time fluorescence quantitative PCR (qPCR). The bioassay revealed that the five populations tested had developed moderate to high levels of resistance to imidacloprid (12.26–46.07‐fold), while the populations remained sensitive to thiamethoxam except for HT, which had a low level of resistance. The qPCR results showed that the expression levels of five P450 genes, CYP4G68, CYP6CM1, CYP303A1‐like, CYP6DZ7 and CYP6DZ4, were significantly higher in some resistant field populations than in the susceptible strain. Resistance to imidacloprid in field populations of B. tabaci might be associated with the increased expression of these five cytochrome P450 genes. The results are useful for further understanding the mechanism of neonicotinoid resistance and will contribute to the management of insecticide‐resistant B. tabaci in Xinjiang.  相似文献   

4.
Bemisia tabaci, a resistance‐prone insect pest, is a cryptic species complex with important invasive biotypes such as B and Q. The biotype and resistance statuses of this pest in Malaysia remain unclear. This study assessed the biotype and resistance status of a number of contemporary populations of B. tabaci based on the mtCO1 marker and the dose‐response method, respectively. The Pahang (PHG) population was labelled as the Q biotype, while the remainder of the populations belonged to the Asia 1 biotype. A very low level of resistance for profenofos, cypermethrin, and imidacloprid was detected for all populations [resistance factor (RF) < 10]. Resistance to diafenthiuron ranged from very low to very high (RF > 100). All populations showed a very low level of resistance against pymetrozine except Q‐type PHG population, which exhibited a very high level of resistance. For most insecticides, the highest level of resistance was detected in the PHG population. The implications of these findings for better management of this noxious pest are discussed.  相似文献   

5.
The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.  相似文献   

6.
The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics. B and Q are amongst the most dominant and damaging biotypes, differing considerably in fecundity, host range, insecticide resistance, virus vectoriality, and the symbiotic bacteria they harbor. We used a spotted B. tabaci cDNA microarray to compare the expression patterns of 6000 ESTs of B and Q biotypes under standard 25 °C regime and heat stress at 40 °C. Overall, the number of genes affected by increasing temperature in the two biotypes was similar. Gene expression under 25 °C normal rearing temperature showed clear differences between the two biotypes: B exhibited higher expression of mitochondrial genes, and lower cytoskeleton, heat-shock and stress-related genes, compared to Q. Exposing B biotype whiteflies to heat stress was accompanied by rapid alteration of gene expression. For the first time, the results here present differences in gene expression between very closely related and sympatric B. tabaci biotypes, and suggest that these clear-cut differences are due to better adaptation of one biotype over another and might eventually lead to changes in the local and global distribution of both biotypes.  相似文献   

7.
The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b5 on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions.  相似文献   

8.
Cyenopyrafen is a Mitochondrial Electron Transport Inhibitor (METI) acaricide with a novel mode of action at complex II, which has been recently developed for the control of the spider mite Tetranychus urticae, a pest of eminent importance globally. However, some populations of T. urticae are cross-resistant to this molecule, and cyenopyrafen resistance can be readily selected in the lab. The cytochrome P450s genes CYP392A11 and CYP392A12 have been strongly associated with the phenotype. We expressed the CYP392A11 and the CYP392A12 genes with T. urticae cytochrome P450 reductase (CPR) in Escherichia coli. CYP392A12 was expressed predominately as an inactive form, witnessed by a peak at P420, despite optimization efforts on expression conditions. However, expression of CYP392A11 produced a functional enzyme, with high activity and preference for the substrates Luciferin-ME EGE and ethoxycoumarin. CYP392A11 catalyses the conversion of cyenopyrafen to a hydroxylated analogue (kcat = 2.37 pmol/min/pmol P450), as well as the hydroxylation of fenpyroximate (kcat = 1.85 pmol/min/pmol P450). In addition, transgenic expression of CYP392A11 in Drosophila melanogaster, in conjunction with TuCPR, confers significant levels of fenpyroximate resistance.The overexpression of CYP392A11 in multi-resistant T. urticae strains, not previously exposed to cyenopyrafen, which had been indicated by microarray studies, was confirmed by qPCR, and it was correlated with significant levels of cyenopyrafen and fenpyroximate cross-resistance. The implications of our findings for insecticide resistance management strategies are discussed.  相似文献   

9.
10.
11.
Cytochrome P450 monooxygenases (CYP s) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYP s which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYP s viz. CYP 417A2v2, CYP 425A1v2, and CYP 4DJ 1 from CYP 4 family of Laodelphax striatellus were randomly selected for experiments. CYP 417A2v2 and CYP 425A1v2 were found expressed successfully in Sf9 cell line while CYP 4DJ 1 was not expressed successfully and out of two expressed CYP s, only CYP 417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p‐nitroanisole and ethoxycoumarin were preferentially metabolized by CYP 417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min?1 mg protein?1, respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP 417A2v2. Incubation of imidacloprid with CYP 417A2v2 of L. striatellus and subsequent HPLC , LC ‐MS , and MS /MS analysis revealed the formation of imidacloprid metabolites, that is, 4′ or 5′hydroxy‐imidacloprid by hydroxylation. This result implies the exemption of CYP s character that it is not always, all the CYP s degrading insecticides being selected and overexpressed in resistant strains and the degrading CYP s without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYP s in insecticide degradation can provide insight for better understand of insecticide resistance development.  相似文献   

12.
Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a Km for tryptamine as substrate of 0.42 µM, and a Vmax of 9.39 nmol/mg protein/min. The apparent Km for acetyl-CoA was 59.9 µM and the Vmax was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.  相似文献   

13.
Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1‐trichloro‐2,2‐bis(4‐methoxyphenyl)ethane, 1 ) against the background of endogenous enzymes of the corresponding non‐transgenic culture. The Cyp6g1‐transgenic cell culture metabolized 96% of applied methoxychlor (45.8 μg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 μg), whereas inhibition in the non‐transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid ( 6 ; 20 μg, 24 h) in the Cyp6g1‐transgenic culture by 82% in the presence of piperonyl butoxide (200 μg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor ( 1 ). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.  相似文献   

14.
Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide‐metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and carbon monoxide (CO)‐difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p‐nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin‐HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.  相似文献   

15.
CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP+ reductase (FNR): H2N-CYP175A1-Fdx-FNR-COOH (175FR) and H2N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The Vmax value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the km values of these enzymes were similar. 175RF retained 50% residual activity even at 80 °C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.  相似文献   

16.
The Australian sheep blowfly, Lucilia cuprina, is a primary cause of sheep flystrike and a major agricultural pest. Cytochrome P450 enzymes have been implicated in the resistance of L. cuprina to several classes of insecticides. In particular, CYP6G3 is a L. cuprina homologue of Drosophila melanogaster CYP6G1, a P450 known to confer multi-pesticide resistance. To investigate the basis of resistance, a bicistronic Escherichia coli expression system was developed to co-express active L. cuprina CYP6G3 and house fly (Musca domestica) P450 reductase. Recombinant CYP6G3 showed activity towards the high-throughput screening substrates, 7-ethoxycoumarin and p-nitroanisole, but not towards p-nitrophenol, coumarin, 7-benzyloxyresorufin, or seven different luciferin derivatives (P450-Glo™ substrates). The addition of house fly cytochrome b5 enhanced the kcat for p-nitroanisole dealkylation approximately two fold (17.8 ± 0.5 vs 9.6 ± 0.2 min−1) with little effect on KM (13 ± 1 vs 10 ± 1 μM). Inhibition studies and difference spectroscopy revealed that the organochlorine compounds, DDT and endosulfan, and the organophosphate pesticides, malathion and chlorfenvinphos, bind to the active site of CYP6G3. All four pesticides showed type I binding spectra with spectral dissociation constants in the micromolar range suggesting that they may be substrates of CYP6G3. While no significant inhibition was seen with the organophosphate, diazinon, or the neonicotinoid, imidacloprid, diazinon showed weak binding in spectral assays, with a Kd value of 23 ± 3 μM CYP6G3 metabolised diazinon to the diazoxon and hydroxydiazinon metabolites and imidacloprid to the 5-hydroxy and olefin metabolites, consistent with a proposed role of CYP6G enzymes in metabolism of phosphorothioate and neonicotinoid insecticides in other species.  相似文献   

17.
18.
19.
Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96 h to 0.43, 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 and a solvent control, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC–MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 as compared to the control animals.  相似文献   

20.
《Journal of Asia》2022,25(2):101901
Cotton whitefly, Bemisia tabaci is an important polyphagous pest worldwide. It is exposed to various chemical insecticides throughout the year, resulting in the rapid development of insecticide resistance. Mixtures of insecticides with distinct modes of action could enhance the toxicity of chemicals more effectively than sequences or rotations in resistant pest populations. Bioassays were conducted to study the efficacy of mixtures of neonicotinoid and ketoenol insecticides at different ratios against a laboratory susceptible (Lab-WB) and a neonicotinoid resistant (TMX-SEL) strain of B. tabaci Asia I. The results showed that mixtures of imidacloprid, acetamiprid, thiamethoxam or dinotefuran with spiromesifen at 1:1, 1:10 and 1:20 ratios and of imidacloprid, thiamethoxam or dinotefuran with spirotetramat at 1:1 ratio significantly increased (p < 0.05) toxicity to neonicotinoids in TMX-SEL strain. The combination indices of each tested neonicotinoids + ketoenols at 1:1 ratio and of acetamiprid + spiromesifen, and imidacloprid or dinotefuran + spirotetramat at 1:10 ratio for TMX-SEL strain were significantly below 1, suggesting synergistic interactions. The inhibitors PBO and DEF largely overcame resistance to the tested neonicotinoids, while none of the synergists significantly restored the susceptibility of B. tabaci to ketoenols. Increased activities of P450 monooxygenase and esterase were observed in TMX-SEL strain with an elevated 2.76 and 1.32-fold, respectively. Mixtures of neonicotinoids with spiromesifen or spirotetramat at a 1:1 ratio could be used to restore the neonicotinoid susceptibility in B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号