首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

2.
Animals are often forced to accommodate disturbance to their territories or nests. When nest relocation becomes necessary, it is important to efficiently evaluate alternative nest sites to choose the one most suitable under current conditions. However, if time is limiting, species may experience a speed-versus-accuracy trade-off when searching for a new home. We examined nest site selection under duress (in the form of flooding) in two species of ants: Linepithema humile and Tapinoma sessile. We predicted that if ants are able to assess and evacuate to the most suitable location, colonies should move to higher elevation, relative to their current nest site, in response to flooding. To test for a speed-versus-accuracy trade-off, we presented colonies with new nest chambers that were either higher, lower, or at the same height as their current nest and examined if their ability to efficiently choose a new site was influenced by the rate of flooding. When flooding rates were slow, both species favored the highest nest site and nearly always moved their entire nest to the same chamber. However, when the rate of flooding was doubled, colonies of T. sessile less often chose the highest nest site and were also more likely to split their nests between two of the available chambers. These results demonstrate a trade-off between speed and accuracy in nest site selection for odorous house ants, while L. humile retained their ability to adequately assess new nest sites under the conditions we presented. These patterns may arise from differences in exploratory behavior and activity between the two species. Despite having identical colony sizes, L. humile had approximately ten times more workers exploring the alternate nest sites 30 min into the experiment than did T. sessile.  相似文献   

3.
Compromises between speed and accuracy are seemingly inevitable in decision-making when accuracy depends on time-consuming information gathering. In collective decision-making, such compromises are especially likely because information is shared to determine corporate policy. This political process will also take time. Speed–accuracy trade-offs occur among house-hunting rock ants, Temnothorax albipennis. A key aspect of their decision-making is quorum sensing in a potential new nest. Finding a sufficient number of nest-mates, i.e. a quorum threshold (QT), in a potential nest site indicates that many ants find it suitable. Quorum sensing collates information. However, the QT is also used as a switch, from recruitment of nest-mates to their new home by slow tandem running, to recruitment by carrying, which is three times faster. Although tandem running is slow, it effectively enables one successful ant to lead and teach another the route between the nests. Tandem running creates positive feedback; more and more ants are shown the way, as tandem followers become, in turn, tandem leaders. The resulting corps of trained ants can then quickly carry their nest-mates; but carried ants do not learn the route. Therefore, the QT seems to set both the amount of information gathered and the speed of the emigration. Low QTs might cause more errors and a slower emigration—the worst possible outcome. This possible paradox of quick decisions leading to slow implementation might be resolved if the ants could deploy another positive-feedback recruitment process when they have used a low QT. Reverse tandem runs occur after carrying has begun and lead ants back from the new nest to the old one. Here we show experimentally that reverse tandem runs can bring lost scouts into an active role in emigrations and can help to maintain high-speed emigrations. Thus, in rock ants, although quick decision-making and rapid implementation of choices are initially in opposition, a third recruitment method can restore rapid implementation after a snap decision. This work reveals a principle of widespread importance: the dynamics of collective decision-making (i.e. the politics) and the dynamics of policy implementation are sometimes intertwined, and only by analysing the mechanisms of both can we understand certain forms of adaptive organization.  相似文献   

4.
Emigrating colonies of the ant Temnothorax (formerly Leptothorax)albipennis can choose the best of several nest sites, even whenthe active ants organizing the move do not compare sites. Thiscollective ability depends on a quorum rule used by ants assessinga candidate site. Only when the site's population has surpasseda threshold do they switch from slow recruitment of fellow activeants by tandem runs to rapid transport of the majority of thecolony. Here, I show that ants perceive the achievement of aquorum through their rate of direct encounters with nest matesat the site. When ants in a crowded site were prevented fromtactile contact with nest mates, they recruited by tandem runs,as though to an empty nest. Furthermore, when the encounterrate was raised independent of population, by reducing the sizeof the candidate nest, ants started to transport at a significantlylower population. The switch occurred at the same encounterrate regardless of nest size, whether the rate was measuredas the mean over the entire visit or as the inverse of the latencyuntil the first encounter. Because encounter rate reflects thedensity of nest mates and thus varies with nest size as wellas population, the ants' collective decision-making algorithmmay be robust to the exact population at which the switch totransport occurs. Ants cease monitoring quorum presence afterswitching to transport, coincident with an abrupt shorteningof visit duration by approximately 2 min, which may be interpretedas the time required for quorum detection.  相似文献   

5.

Background

Successful collective decision-making depends on groups of animals being able to make accurate choices while maintaining group cohesion. However, increasing accuracy and/or cohesion usually decreases decision speed and vice-versa. Such trade-offs are widespread in animal decision-making and result in various decision-making strategies that emphasize either speed or accuracy, depending on the context. Speed-accuracy trade-offs have been the object of many theoretical investigations, but these studies did not consider the possible effects of previous experience and/or knowledge of individuals on such trade-offs. In this study, we investigated how previous knowledge of their environment may affect emigration speed, nest choice and colony cohesion in emigrations of the house-hunting ant Temnothorax albipennis, a collective decision-making process subject to a classical speed-accuracy trade-off.

Methodology/Principal Findings

Colonies allowed to explore a high quality nest site for one week before they were forced to emigrate found that nest and accepted it faster than emigrating naïve colonies. This resulted in increased speed in single choice emigrations and higher colony cohesion in binary choice emigrations. Additionally, colonies allowed to explore both high and low quality nest sites for one week prior to emigration remained more cohesive, made more accurate decisions and emigrated faster than emigrating naïve colonies.

Conclusions/Significance

These results show that colonies gather and store information about available nest sites while their nest is still intact, and later retrieve and use this information when they need to emigrate. This improves colony performance. Early gathering of information for later use is therefore an effective strategy allowing T. albipennis colonies to improve simultaneously all aspects of the decision-making process – i.e. speed, accuracy and cohesion – and partly circumvent the speed-accuracy trade-off classically observed during emigrations. These findings should be taken into account in future studies on speed-accuracy trade-offs.  相似文献   

6.
Many decisions involve a trade-off between commitment and flexibility. We show here that the collective decisions ants make over new nest sites are sometimes sufficiently flexible that the ants can change targets even after an emigration has begun. Our findings suggest that, in this context, the ants’ procedures are such that they can sometimes avoid ‘negative information cascades’ which might lock them into a poor choice. The ants are more responsive to belated good news of a higher quality nest than they are when the nest they had initially chosen degraded to become worse than an alternative. Our study confirms, in a new way, that ant colonies can be very powerful “search engines”.  相似文献   

7.
Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the alternative. How do they do this? We used radio-frequency identification-tagged ants to monitor individual behaviour. Here we show for the first time that switching between nests during the decision process can influence nest choice without requiring direct comparison of nests. Ants finding the poor nest were likely to switch and find the good nest, whereas ants finding the good nest were more likely to stay committed to that nest. When ants switched quickly between the two nests, colonies chose the good nest. Switching by ants that had the opportunity to compare nests had little effect on nest choice. We suggest a new mechanism of collective nest choice: individuals respond to nest quality by the decision either to commit or to seek alternatives. Previously proposed mechanisms, recruitment latency and nest comparison, can be explained as side effects of this simple rule. Colony-level comparison and choice can emerge, without direct comparison by individuals.  相似文献   

8.
A high-quality home can be a major factor determining fitness. However, when house hunting becomes necessary, animals might often face a speed-versus-accuracy trade-off and therefore be unable to survey their environment extensively for the optimum site. We found that the ant Leptothorax albipennis was able to correct errors made in such a hurried decision by continuing to survey even after a colony had settled in a nest site. Colonies moved from intact undisturbed nests to another nest site whenever the new nest site presented a sufficient improvement in nest quality. Thus, scout ants must be able to judge and compare the quality of the new, empty nest site with the one currently inhabited by the colony. Emigrations from intact nests were initiated by high numbers of ants recruited by tandem runs. This evidence may explain how a small number of scouts can motivate an entire colony to move when there is no immediate need to do so. Compared with their behaviour in emigrations from destroyed nests, the ants favoured even more strongly accuracy over speed, because they waited for a larger number of scouts to agree on one site before starting the emigration. They could do this without increased risk because the rest of the colony remained safely in the old nest.  相似文献   

9.
Collective decisions in animal groups emerge from the actions of individuals who are unlikely to have global information. Comparative assessment of options can be valuable in decision-making. Ant colonies are excellent collective decision-makers, for example when selecting a new nest-site. Here, we test the dependency of this cooperative process on comparisons conducted by individual ants. We presented ant colonies with a choice between new nests: one good and one poor. Using individually radio-tagged ants and an automated system of doors, we manipulated individual-level access to information: ants visiting the good nest were barred from visiting the poor one and vice versa. Thus, no ant could individually compare the available options. Despite this, colonies still emigrated quickly and accurately when comparisons were prevented. Individual-level rules facilitated this behavioural robustness: ants allowed to experience only the poor nest subsequently searched more. Intriguingly, some ants appeared particularly discriminating across emigrations under both treatments, suggesting they had stable, high nest acceptance thresholds. Overall, our results show how a colony of ants, as a cognitive entity, can compare two options that are not both accessible by any individual ant. Our findings illustrate a collective decision process that is robust to differences in individual access to information.  相似文献   

10.
This paper examines the individual behavior underlying collective choice among nest sites by the ant Temnothorax (formerly Leptothorax) curvispinosus. Colonies can actively compare options, rejecting a mediocre site when it is paired with a good one, but accepting the same mediocre design if it is instead paired with a worse site. This ability emerges from the behavior of an active minority of workers who organize emigrations. When one of these finds a promising site, she recruits nest mates to it, but only after a delay that varies inversely with site quality. Ants first recruit fellow active ants via slow tandem runs, but eventually switch to speedier transports of the colony’s passive majority. Later transports grow faster still, as ants improve their speed with experience. An ant’s choice of recruitment type is governed by a quorum rule, such that her likelihood of starting to transport increases with the population of the new site. The size of the quorum depends on experience, with ants demanding a larger population to launch immediately into transport than they do to switch to transport after first leading a few tandem runs. Perception of quorum attainment requires direct contact between ants. The ants’ behavior qualitatively matches that of T. albipennis, where models have shown that decentralized choice of the best site depends on quality-dependent recruitment delays, amplified by a quorum rule for initiating transport. Parameter estimates for an agent-based model show significant quantitative differences between the species, and suggest that T. albipennis may place relatively greater emphasis on emigration speed. Received 11 February 2005; revised 10 May 2005; accepted 20 May 2005.  相似文献   

11.
During colony relocation, the selection of a new nest involves exploration and assessment of potential sites followed by colony movement on the basis of a collective decision making process. Hygiene and pathogen load of the potential nest sites are factors worker scouts might evaluate, given the high risk of epidemics in group-living animals. Choosing nest sites free of pathogens is hypothesized to be highly efficient in invasive ants as each of their introduced populations is often an open network of nests exchanging individuals (unicolonial) with frequent relocation into new nest sites and low genetic diversity, likely making these species particularly vulnerable to parasites and diseases. We investigated the nest site preference of the invasive pharaoh ant, Monomorium pharaonis, through binary choice tests between three nest types: nests containing dead nestmates overgrown with sporulating mycelium of the entomopathogenic fungus Metarhizium brunneum (infected nests), nests containing nestmates killed by freezing (uninfected nests), and empty nests. In contrast to the expectation pharaoh ant colonies preferentially (84%) moved into the infected nest when presented with the choice of an infected and an uninfected nest. The ants had an intermediate preference for empty nests. Pharaoh ants display an overall preference for infected nests during colony relocation. While we cannot rule out that the ants are actually manipulated by the pathogen, we propose that this preference might be an adaptive strategy by the host to “immunize” the colony against future exposure to the same pathogenic fungus.  相似文献   

12.
We tested the decision-making abilities of emigrating ant colonies. The colonies had to choose a new nest site when presented with two or more potential nest sites, each with different attributes or different combinations of attributes. For Leptothorax albipennis colonies in the laboratory, darkness of the nest cavity, internal height of the cavity and width of the entrance were all important attributes. The colonies ranked these attributes: darkness of the nest site was more important than internal cavity height, which in turn was more important than entrance width. These choices conform to the logic of transitivity. In addition, the colonies used a sophisticated decision-making strategy in which they took all alternatives and all attributes into consideration. Furthermore, the ants, in effect, weighed the different values of different attributes. They also chose the best nest when presented with only one excellent nest among four mediocre ones or one excellent nest in an array of one excellent, one good and one mediocre. Altogether, our results suggest that these ant colonies, in deciding upon a new home, used a weighted additive strategy, one of the most computationally expensive and thorough decision-making strategies. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

13.
Reconnaissance and latent learning in ants   总被引:6,自引:0,他引:6  
We show that ants can reconnoitre their surroundings and in effect plan for the future. Temnothorax albipennis colonies use a sophisticated strategy to select a new nest when the need arises. Initially, we presented colonies with a new nest of lower quality than their current one that they could explore for one week without a need to emigrate. We then introduced a second identical low quality new nest and destroyed their old nest so that they had to emigrate. Colonies showed a highly significant preference for the (low quality) novel new nest over the identical but familiar one. In otherwise identical experiments, colonies showed no such discrimination when the choice was between a familiar and an unfamiliar high-quality nest. When, however, either all possible pheromone marks were removed, or landmarks were re-orientated, just before the emigration, the ants chose between identical low-quality new nests at random. These results demonstrate for the first time that ants are capable of assessing and retaining information about the quality of potential new nest sites, probably by using both pheromones and landmark cues, even though this information may only be of strategic value to the colony in the future. They seem capable, therefore, of latent learning and, more explicitly, learning what not to do.  相似文献   

14.
Animal groups can show consistent behaviors or personalities just like solitary animals. We studied the collective behavior of Temnothorax nylanderi ant colonies, including consistency in behavior and correlations between different behavioral traits. We focused on four collective behaviors (aggression against intruders, nest relocation, removal of infected corpses and nest reconstruction) and also tested for links to the immune defense level of a colony and a fitness component (per-capita productivity). Behaviors leading to an increased exposure of ants to micro-parasites were expected to be positively associated with immune defense measures and indeed colonies that often relocated to other nest sites showed increased immune defense levels. Besides, colonies that responded with low aggression to intruders or failed to remove infected corpses, showed a higher likelihood to move to a new nest site. This resembles the trade-off between aggression and relocation often observed in solitary animals. Finally, one of the behaviors, nest reconstruction, was positively linked to per-capita productivity, whereas other colony-level behaviors, such as aggression against intruders, showed no association, albeit all behaviors were expected to be important for fitness under field conditions. In summary, our study shows that ant societies exhibit complex personalities that can be associated to the physiology and fitness of the colony. Some of these behaviors are linked in suites of correlated behaviors, similar to personalities of solitary animals.  相似文献   

15.
Nest site quality can affect survival and reproduction, and thus many animals have evolved behaviors which facilitate nest site assessment and selection. Ants of the genus Temnothorax have been shown to include an array of nest site attributes when choosing such a site. Here, we show that they also include traits of the habitat surrounding nest sites. In particular, we found that during emigration, ants preferred to move to nests located close to a previously explored food-rich area. We also determined that scent markings played a role in this choice and that scouts and transporting ants may have tracked scent marks laid in foraging, and this behavior could have biased emigration toward nests located near previously foraged areas. These results indicate that pheromones play a bigger role in Temnothorax foraging and decision making in emigration than previously thought. Overall, this work provides new insights into the mechanisms involved in habitat selection in ants and contributes to our understanding of collective behavior in social insects in general.  相似文献   

16.
Endothermic heat production is a crucial evolutionary adaptation that is, amongst others, responsible for the great success of honeybees. Endothermy ensures the survival of the colonies in harsh environments and is involved in the maintenance of the brood nest temperature, which is fundamental for the breeding and further development of healthy individuals and thus the foraging and reproduction success of this species. Freshly emerged honeybees are not yet able to produce heat endothermically and thus developed behavioural patterns that result in the location of these young bees within the warm brood nest where they further develop and perform tasks for the colony. Previous studies showed that groups of young ectothermic honeybees exposed to a temperature gradient collectively aggregate at the optimal place with their preferred temperature of 36°C but most single bees do not locate themselves at the optimum. In this work we further investigate the behavioural patterns that lead to this collective thermotaxis. We tested single and groups of young bees concerning their ability to discriminate a local from a global temperature optimum and, for groups of bees, analysed the speed of the decision making process as well as density dependent effects by varying group sizes. We found that the majority of tested single bees do not locate themselves at the optimum whereas sufficiently large groups of bees are able to collectively discriminate a suboptimal temperature spot and aggregate at 36°C. Larger groups decide faster than smaller ones, but in larger groups a higher percentage of bees may switch to the sub-optimum due to crowding effects. We show that the collective thermotaxis is a simple but well evolved, scalable and robust social behaviour that enables the collective of bees to perform complex tasks despite the limited abilities of each individual.  相似文献   

17.
In the honeybee swarm nest-site selection process, individual bees gather information about available candidate sites and communicate the information to other bees. The swarm makes an agreement for a candidate site when the number of bees that supports the site reaches a threshold. This threshold is usually referred to as the quorum threshold and it is shown by many studies as a key parameter that is a compromise between the accuracy and speed of decisions. In the present work, we use a model of the honeybee Apis mellifera nest-site selection process to study how the quorum threshold and discovery time of candidate sites have major impact on two unfavorable situations in selecting a nest site: decision deadlock and decision split. We show that cross-inhibitory stop-signaling, delivered among bees supporting different sites, enables swarms to avoid the decision split problem in addition to avoiding the decision deadlock problem that has been previously proposed. We also show that stop-signaling improves decision speed, but compromises decision accuracy in swarms using high quorum thresholds by causing the swarms to be trapped in local optima (e.g., choosing a sub-optimal option that is encountered first). On the other hand, we demonstrate that stop-signaling can reduce split decisions without compromising decision accuracy in swarms using low quorum thresholds when it is compared to the accuracy of swarms using the same threshold values but not exhibiting stop-signaling. Based on our simulations, we suggest that swarms using low quorum thresholds (as well as swarms with large population sizes) would benefit more from exhibiting the stop-signaling activity than not exhibiting it.  相似文献   

18.
Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants’ decentralized decision mechanism. A colony''s choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals.  相似文献   

19.
Environmental conditions and physical constraints both influence an animal's behavior. We investigate whether behavioral variation among colonies of the black harvester ant, Messor andrei, remains consistent across foraging and disturbance situations and ask whether consistent colony behavior is affected by nest site and weather. We examined variation among colonies in responsiveness to food baits and to disturbance, measured as a change in numbers of active ants, and in the speed with which colonies retrieved food and removed debris. Colonies differed consistently, across foraging and disturbance situations, in both responsiveness and speed. Increased activity in response to food was associated with a smaller decrease in response to alarm. Speed of retrieving food was correlated with speed of removing debris. In all colonies, speed was greater in dry conditions, reducing the amount of time ants spent outside the nest. While a colony occupied a certain nest site, its responsiveness was consistent in both foraging and disturbance situations, suggesting that nest structure influences colony personality.  相似文献   

20.
1. Organisms face the difficult task of selecting an optimal new nest from the available options during relocation. Studies on honeybees and ants in their natural habitat indicate that scouts encounter multiple options that vary in their physical and biotic characteristics. 2. Architectural features, location, odour, and the presence of nest mates impact their choice of nest site selection. In order to examine the influence of diverse parameters on final nest site selection we conducted choice experiments on ants in the context of relocation. 3. After controlling for any influence by physical characteristics, we found that the presence of brood, adults, and colony odour acted as attractants with more colonies relocating into these new nests than expected by chance alone. In contrast, the presence of a reproductive female, or familiarity of location had no influence on the choice. New nests containing dead ants evoked cleaning responses from scouts, which may interfere with relocation into these nests. 4. Even although colonies consist of hundreds of adults and brood, colony integrity was maintained in 98.7% of colonies. Furthermore, we found that none of the eight studied colonies relocated when faced with minor flooding in their natural habitat, indicating that the cost of relocation is non‐trivial and that this species is capable of minor damage repairs. 5. These observations highlight the complexity of relocation in general, allow the characterisation of desirable nest attributes in this species, and highlight the need for similar exploration in other social insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号