首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms for phagocytosis of myelin in cell-mediated demyelinating diseases have not been clarified. We have previously shown with cultured phagocytic cells that myelin opsonized with antiserum to myelin constituents is phagocytized in much higher amounts than untreated myelin, indicating that Fc receptors may be involved in the demyelinating process. Using various treatments of antisera, such as heating to destroy complement, and purification of IgG, we show here that complement is a necessary factor for maximal myelin phagocytosis by cultured macrophages. If myelin is sonicated to decrease its particle size, however, complement is not an active factor. Cultured microglia, on the other hand, required complement for maximal phagocytosis of both unsonicated and sonicated myelin. Addition of serum complement greatly increased phagocytosis of untreated CNS and PNS myelin, both unsonicated and sonicated, by macrophages and microglia. From these results it appears that the most important effect of complement is to fragment the myelin, making it more easily phagocytized. Prefragmentation of myelin by sonication can substitute for complement. Complement receptors may, in addition, be important for maximal myelin phagocytosis by microglia.This work was done at the VA Medical Center in fulfillment of the research requirement at the University of Amsterdam  相似文献   

2.
Peripheral macrophages infiltrating the central nervous system and resident microglia phagocytize myelin in cell-mediated demyelinating diseases, including experimental autoimmune encephalomyelitis and multiple sclerosis. A cascade of cytokines is believed to modulate the immunological sequence of events occurring in these conditions, and several of these mediate their effects through the protein kinase C pathway. Therefore, we compared the effects of phorbol myristate acetate (PMA), an activator of protein kinase C, on various functions of cultured macrophages and microglia. PMA at moderate concentrations induced apoptosis in macrophages, and this process appeared to be increased in the presence of myelin. In contrast, microglia were activated by PMA, and greatly increased their phagocytosis of myelin. Control macrophages released a considerable amount of proteolytic activity into the medium, as measured by the breakdown of myelin basic protein, and in the process of undergoing apoptosis from PMA-treatment, even higher amounts were released. The enzyme activity in control macrophage medium was inhibited mainly by PMSF and calpain inhibitors, while that from PMA-treated macrophages was inhibited by calpain inhibitors only. An ICE inhibitor was ineffective in inhibiting activity in medium from PMA-treated cells undergoing apoptosis. Medium from microglia contained very little proteolytic activity, and this was not increased by PMA. Cultured macrophages showed little evidence of oxygen free radical release as measured by the TBARS procedure, and PMA had no effect. Microglia, on the other hand, produced higher levels of reactive oxygen species, with a further increase of 18% by PMA. Thus major functions of these phagocytic cells appear to be modulated by the protein kinase C pathway, although the two cell types show very different responses to an activator of this signal.Medical Student at the  相似文献   

3.
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis.  相似文献   

4.
Microglia, the resident macrophages of the central nervous system, rapidly activate in nearly all kinds of neurological diseases. These activated microglia become highly motile, secreting inflammatory cytokines, migrating to the lesion area, and phagocytosing cell debris or damaged neurons. During the past decades, the secretory property and chemotaxis of microglia have been well-studied, while relatively less attention has been paid to microglial phagocytosis. So far there is no obvious concordance with whether it is beneficial or detrimental in tissue repair. This review focuses on phagocytic phenotype of microglia in neurological diseases such as Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, traumatic brain injury, ischemic and other brain diseases. Microglial morphological characteristics, involved receptors and signaling pathways, distribution variation along with time and space changes, and environmental factors that affecting phagocytic function in each disease are reviewed. Moreover, a comparison of contributions between macrophages from peripheral circulation and the resident microglia to these pathogenic processes will also be discussed.  相似文献   

5.
Mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating disease with symptoms of hindlimb paralysis. Histological examination of the brains and spinal cords of these animals reveals the presence of large numbers of activated macrophages/microglia. In two other experimental models of demyelination, experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus-induced demyelination, depletion of hematogenous macrophages abrogates the demyelinating process. In both of these diseases, early events in the demyelinating process are inhibited by macrophage depletion. From these studies, it was not possible to determine whether infiltrating macrophages were required for late steps in the process, such as myelin removal. In this study, we show that when macrophages are depleted with either unmodified or mannosylated liposomes encapsulating dichloromethylene diphosphate, the amount of demyelination detected in MHV-infected mice is not affected. At a time when these cells were completely depleted from the liver, approximately equivalent numbers of macrophages were present in the spinal cords of control and drug-treated animals. These results suggest that blood-borne macrophages are not required for MHV-induced demyelination and also suggest that other cells, such as perivascular macrophages or microglia, perform the function of these cells in the presence of drug.  相似文献   

6.
Diemel  L.T.  Copelman  C.A.  Cuzner  M.L. 《Neurochemical research》1998,23(3):341-347
Hematogenous macrophages and resident brain microglia are agents of demyelination in multiple sclerosis (MS) and paradoxically may also participate in remyelination. In vitro studies have shown that macrophage enrichment of aggregate brain cultures promotes myelination per se and enhances the capacity to remyelinate following a demyelinating episode. It has been hypothesized that remyelination in MS is implemented by surviving dedifferentiated oligodendrocytes or by newly recruited progenitors that migrate, proliferate and synthesize myelin in response to signalling molecules in the local environment. We postulate that macrophage-derived cytokines or growth factors may directly or indirectly promote oligodendroglial proliferation and differentiation, contributing to myelin repair in inflammatory demyelinating disease.  相似文献   

7.
In most demyelinating diseases, macrophages are believed to be active agents of myelin destruction. In experimental encephalomyelitis, these cells appear to strip off and ingest the myelin lamellae, and myelin debris has been observed within the cell body. We show here in vitro conditions in which rat peritoneal macrophages phagocytose and metabolize CNS myelin lipids. Purified rat myelin, prelabeled in vivo with [14C]acetate, was incubated with preimmune serum or rabbit antiserum to rat CNS myelin and added to macrophage monolayers. Myelin opsonized with antimyelin antibodies was more readily phagocytosed and metabolized by cultured macrophages than untreated myelin or that preincubated with preimmune serum. In the presence of macrophages, levels of myelin polar lipids and cholesterol decreased, whereas radioactive cholesterol ester and triglyceride accumulated. Up to five times as much radioactive cholesterol ester and about twice as much triglyceride accumulated in macrophage cultures containing antibody-treated myelin as in cultures fed preimmune serum-treated myelin or in those incubated with untreated myelin. Both the fatty acid and the cholesterol from cholesterol ester contained radioactive label; therefore, both were derived at least partly from the radioactive myelin lipid. Antiserum to myelin purified from peripheral nerve was almost as effective as that to CNS myelin in stimulating cholesterol metabolism, whereas antiserum to galactocerebroside was about 70% as active. Antiserum to basic protein had less effect, whereas antiserum to the myelin-associated glycoprotein and proteolipid protein was inactive. Of the polar lipids, ethanolamine phosphatide was most degraded in both the antiserum- and preimmune serum-treated myelin, with the diacyl form and plasmalogen form degraded about equally. These experiments indicate that myelin-specific antibodies in inflammatory CNS lesions may participate in and stimulate macrophage-mediated demyelination.  相似文献   

8.
Neuropathological diseases involving destruction of the myelin sheath of nerve fibers as a leading pathogenetic process are very extensively distributed. In spite of numerous studies in this field, mechanisms of myelin destruction remain in many aspects unsatisfactorily interpreted. Investigation of pathogenesis of demyelinating disease, especially on the molecular and genetic levels, makes necessary the improvement of the existing approaches and, in particular, development of adequate models of such diseases. In our review, we describe modern notions on the structure of myelin sheaths and some mechanisms of their destruction, as well as some models, which allow experimenters to make more perfect our knowledge of the mechanisms of demyelinating diseases, both on the cellular level and on the level of an integral organism.  相似文献   

9.
10.
In the human demyelinating disorder multiple sclerosis, and its animal model experimental allergic encephalomyelitis, there is a breakdown of the blood-brain barrier and an infiltration of immune cells into the CNS. Infiltrating T lymphocytes and macrophages are believed to be key mediators of the disease process. Considerable circumstantial and experimental evidence has suggested that the pleiotropic cytokine interferon gamma (IFN-), which is exclusively expressed by T cells and natural killer cells, is a deleterious component of the immune response in these disorders. When experimentally introduced into the CNS IFN- promotes many of the pathological changes that occur in immune-mediated demyelinating disorders. In vitro, this cytokine elicits a number of effects on oligodendrocytes, including cell death. The harmful actions of IFN- on CNS myelin are likely mediated through direct effects on the myelinating cells, as well as through the activation of macrophages and microglia. In this review we summarize relevant studies concerning the action of IFN- in demyelinating disorders and discuss possible mechanisms for the observed effects.  相似文献   

11.
Recent evidence suggests a pivotal role of the proinflammatory cytokine interleukin - 17A (IL-17) in demyelinating autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS). Nevertheless, it remains unclear if this cytokine exerts direct effects on CNS resident cells during MS or modulates the function of infiltrating immune cells towards a more detrimental phenotype. Here, we investigated the effects of locally produced IL-17 during experimental demyelination of the CNS using the cuprizone (CPZ) model in mice with (GF/IL17) or without transgenic production of IL-17 by astrocytes in the CNS. During early demyelination, GF/IL17 mice demonstrated enhanced activity and decreased anxiety-related behavior in the elevated plus maze suggesting a more severe disease course. Furthermore, in GF/IL17 mice, toxic demyelination was accelerated and synthesis of myelin proteins was reduced. Early demyelination was accompanied by an increased ratio of infiltrating granulocytes in GF/ILl17 mice. The presence of IL-17 during CPZ treatment increased the accumulation of activated microglia and sustained microglial proliferation during myelin loss. Taken together, our results argue for a detrimental role of IL-17 during demyelinating diseases.  相似文献   

12.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated inflammatory demyelinating disease of the CNS that serves as a model for multiple sclerosis. Notch receptor signaling in T lymphocytes has been shown to regulate thymic selection and peripheral differentiation. In the current study, we hypothesized that Notch ligand-receptor interaction affects EAE development by regulating encephalitogenic T cell trafficking. We demonstrate that CNS-infiltrating myeloid dendritic cells, macrophages, and resident microglia expressed Delta-like ligand 4 (DLL4) after EAE induction. Treatment of mice with a DLL4-specific blocking Ab significantly inhibited the development of clinical disease induced by active priming. Furthermore, the treatment resulted in decreased CNS accumulation of mononuclear cells in the CNS. Anti-DLL4 treatment did not significantly alter development of effector cytokine expression by Ag-specific T cells. In contrast, anti-DLL4 treatment reduced T cell mRNA and functional cell surface expression of the chemokine receptors CCR2 and CCR6. Adoptive transfer of Ag-specific T cells to mice treated with anti-DLL4 resulted in decreased clinical severity and diminished Ag-specific CD4(+) T cell accumulation in the CNS. These results suggest a role for DLL4 regulation of EAE pathogenesis through modulation of T cell chemokine receptor expression and migration to the CNS.  相似文献   

13.
The mechanisms underlying oligodendrocyte (OLG) loss and the precise roles played by OLG death in human demyelinating diseases such as multiple sclerosis (MS), and in the rodent model of MS, experimental autoimmune encephalomyelitis (EAE), remain to be elucidated. To clarify the involvement of OLG death in EAE, we have generated transgenic mice that express the baculovirus anti-apoptotic protein p35 in OLGs through the Cre-loxP system. OLGs from cre/p35 transgenic mice were resistant to tumor necrosis factor-alpha-, anti-Fas antibody- and interferon-gamma-induced cell death. cre/p35 transgenic mice were resistant to EAE induction by immunization with the myelin oligodendrocyte glycoprotein. The numbers of infiltrating T cells and macrophages/microglia in the EAE lesions were significantly reduced, as were the numbers of apoptotic OLGs expressing the activated form of caspase-3. Thus, inhibition of apoptosis in OLGs by p35 expression alleviated the severity of the neurological manifestations observed in autoimmune demyelinating diseases.  相似文献   

14.
Multiple sclerosis (MS) is a debilitating T cell mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity.  相似文献   

15.
Yawata I  Takeuchi H  Doi Y  Liang J  Mizuno T  Suzumura A 《Life sciences》2008,82(21-22):1111-1116
We have shown previously, that the most neurotoxic factor from activated microglia is glutamate that is produced by glutaminase utilizing extracellular glutamine as a substrate. Drugs that inhibit glutaminase or gap junction through which the glutamate is released were effective in reducing neurotoxic activity of microglia. In this study, to elucidate whether or not a similar mechanism is operating in macrophages infiltrating into the central nervous system during inflammatory, demyelinating, and ischemic brain diseases, we examined the neurotoxicity induced by macrophages, in comparison with microglia in vitro. LPS- or TNF-alpha-stimulated macrophage-conditioned media induced robust neurotoxicity, which was completely inhibited by the NMDA receptor antagonist MK801. Both the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), and the gap junction inhibitor carbenoxolone (CBX), effectively suppressed glutamate production and subsequent neurotoxicity by activated macrophages. These results revealed that macrophages produce glutamate via glutaminase from extracelluar glutamine, and release it through gap junctions. This study demonstrated that a similar machinery is operating in macrophages as well, and DON and CBX that prevent microglia-mediated neurotoxicity should be effective for preventing macrophage-mediated neurotoxicity. Thus, these drugs may be effective therapeutic reagents for inflammatory, demyelinating, and ischemic brain diseases.  相似文献   

16.
Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine--generated from imipramine and quinacrine--redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies.  相似文献   

17.
The present article summarizes recent observations obtained in our laboratory which clearly indicate that sex steroids exert relevant effects on the peripheral nervous system. In particular, the following important points have emerged: (1) Steroids exert stimulatory actions on the synthesis of the proteins proper of the peripheral myelin (e.g., glycoprotein Po and peripheral myelin protein 22) in vivo and on the Schwann cells in culture; (2) in many cases the actions of hormonal steroids are not due to their native molecular forms but rather to their metabolites (e.g., dihydroprogesterone and tetrahydroprogesterone in the case of progesterone; dihydrotestosterone and 5 alpha-androstane-3 alpha,17 beta-diol in the case of testosterone); (3) the mechanism of action of the various steroidal molecules may involve both classical (progesterone and androgen receptors) and nonclassical steroid receptors (GABA(A) receptor); and finally, (4) the stimulatory action of steroid hormones on the proteins of the peripheral myelin might have clinical significance in cases in which the rebuilding of myelin is needed (e.g., aging, peripheral injury, demyelinating diseases, and diabetic neuropathy).  相似文献   

18.
Bjartmar  Carl  Yin  Xinghua  Trapp  Bruce D. 《Brain Cell Biology》1999,28(4-5):383-395
Myelination provides extrinsic trophic signals that influence normal maturation and long-term survival of axons. The extent of axonal involvement in diseases affecting myelin or myelin forming cells has traditionally been underestimated. There are, however, many examples of axon damage as a consequence of dysmyelinating or demyelinating disorders. More than a century ago, Charcot described the pathology of multiple sclerosis (MS) in terms of demyelination and relative sparing of axons. Recent reports demonstrate a strong correlation between inflammatory demyelination in MS lesions and axonal transection, indicating axonal loss at disease onset. Disruption of axons is also observed in experimental allergic encephalomyelitis and in Theiler's murine encephalomyelitis virus disease, two animal models of inflammatory demyelinating CNS disease. A number of dysmyelinating mouse mutants with axonal pathology have provided insights regarding cellular and molecular mechanisms of axon degeneration. For example, the myelin-associated glycoprotein and proteolipid protein have been shown to be essential for mediating myelin-derived trophic signals to axons. Patients with the inherited peripheral neuropathy Charcot-Marie Tooth disease type 1 develop symptomatic progressive axonal loss due to abnormal Schwann cell expression of peripheral myelin protein 22. The data summarized in this review indicate that axonal damage is an integral part of myelin disease, and that loss of axons contributes to the irreversible functional impairment observed in affected individuals. Early neuroprotection should be considered as an additional therapeutic option for these patients.  相似文献   

19.
Canine distemper is characterized mainly by respiratory, enteric, and nervous symptoms. Infection of the central nervous system results in demyelination, to which inflammation has been shown to contribute significantly. It has been proposed that macrophages play a major role as effector cells in this process. We report that cultured dog brain cells contain a population of macrophages capable of producing reactive oxygen species as measured by luminol-dependent chemiluminescence. In cultures infected with canine distemper virus, a burst of reactive oxygen is triggered by antiviral antibody. This response depends on the presence of viral antigens on the surfaces of infected cells and is mediated by the interaction of antigen-bound antibody with Fc receptors on the macrophages. Since there is no evidence in vitro or in vivo that oligodendrocytes, the cells forming myelin, are infected, our observation supports the hypothesis that "innocent bystander killing" is important in demyelination caused by canine distemper virus. Reactive oxygen species released from macrophages may contribute to destruction of myelin.  相似文献   

20.
Myelin is phagocytosed by microglia (MG) and to a somewhat lesser extent by peritoneal macrophages (Mϕ) in a dose- and time-dependent manner. In serum-free medium opsonization of rat myelin significantly enhances binding and ingestion, more by rat macrophages than by microglia. Furthermore the requirement for opsonization is not restricted to anti-myelin antibodies as the difference in the rate of myelin uptake by macrophages is largely eliminated when they are cultured in 10% fetal calf serum. Binding and ingestion of both myelin and opsonized myelin are inhibited to the same dose-dependent extent by zymosan, oxidized LDL, peroxidase-antiperoxidase (PAP), opsonized erythrocytes and the anti-CR3 antibody OX42 implicating lectin, scavenger, Fc and complement receptors in the phagocytosis of myelin. Thus while the differential uptake of myelin and opsonized myelin by macrophages would indicate a central role for the Fc receptor, binding inhibition studies implicate a range of membrane receptors which would obviate the need for antigen-antibody complexing to stimulate phagocytosis. Uptake of both myelin preparations by macrophages or microglia is stimulated by interferon-γ and inhibited by TGF-β, and the process of ingestion results in increased nitric oxide release and decreased superoxide production, the effect being more pronounced when myelin is opsonized. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号