首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
These experiments evaluated salt transport processes in isolated cortical thick limbs of Henle (cTALH) obtained from mouse kidney. When the external solutions consisted of Krebs-Ringer bicarbonate (KRB), pH 7.4, and a 95% O2-5% CO2 gas phase, the spontaneous transepithelial voltage (Ve, mV, lumen-to-bath) was approximately mV; the net rate of Cl- absorption (JnetCl) was approximately 3,600 pmols s-1 cm-2; the net rate of osmotic solute absorption Jnetosm was twice JnetCl; and the net rate of total CO2 transport (JnetCO2) was indistinguishable from zero. Thus, net Cl- absorption was accompanied by the net absorption of a monovalent cation, presumably Na+, and net HCO3- absorption was negligible. This salt transport process was stimulated by (CO2 + HCO3- ): omission of CO2 from the gas phase and HCO3- from external solutions reduced JnetCl, Jnetosm, and Ve by 50%. Furthermore, 10(-4) M luminal furosemide abolished JnetCl and Ve entirely. The lipophilic carbonic anhydrase inhibitor ethoxzolamide (10(-4) M, either luminal or peritubular) inhibited (CO2 + HCO3-)-stimulated JnetCl, Jnetosm, and Ve by approximately 50%; however, when the combination (CO2 + HCO3-) was absent, ethoxzolamide had no detectable effect on salt transport. Ve was reduced or abolished entirely by omission of either Na+ or Cl- from external solutions, by peritubular K+ removal, by 10(-3) M peritubular ouabain, and by 10(-4) M luminal SITS. However, Ve was unaffected by 10(-3) M peritubular SITS, or by the hydrophilic carbonic anhydrase inhibitor acetazolamide (2.2 x 10(-4) M, lumen plus bath). We interpret these data to indicate that (CO2 + HCO3-)-stimulated NaCl absorption in the cTALH involved two synchronous apical membrane antiport processes: one exchanging luminal Na+ for cellular H+; and the other exchanging luminal Cl- for cellular HCO3- or OH-, operating in parallel with a (CO2+ HCO3-)-independent apical membrane NaCl cotransport mechanism.  相似文献   

2.
Transcapillary CO2 exchange entails a transient perfusate CO2-HCO3(-)-H+ disequilibrium, leading to net loading or unloading of blood HCO3-. Perfusate reequilibration may or may not reach completion during the time of capillary transit, depending on the rate of intracapillary CO2-HCO3(-)-H+ reactions. Failure to reestablish equilibrium within the "open" capillary system leads to continued reequilibration in the "closed" postcapillary vasculature with resultant shifts in postcapillary perfusate PCO2, pH, and [HCO3-]. In the present study, we determined the effects of perfusate nonbicarbonate buffer capacity (beta) on intracapillary CO2-HCO3(-)-H+ reactions in isolated saline-perfused rat lungs. Effects of beta on the rate of transcapillary CO2 excretion (VCO2) and the magnitude of the postcapillary perfusate pH disequilibrium were measured as a function of luminal vascular carbonic anhydrase (CA) activity. The data indicate that beta markedly influenced the kinetics and dynamics of intravascular CO2-HCO3(-)-H+ reactions. beta affected VCO2 and the relative enhancement of VCO2 by luminal vascular CA. The data emphasize the inadequacies of using traditional "equilibrium" models of the CO2-HCO3(-)-H+ system to investigate capillary CO2 transport and exchange, even in organs (e.g., lungs) that contain significant luminal vascular CA activity.  相似文献   

3.
The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO(4)(2-) concentration ([SO(4)(2-)]). Although net tubular SO(4)(2-) reabsorption is the predominate control process in terrestrial vertebrates, a facilitated secretory flux is also present. In contrast, marine teleosts obtain excess SO(4)(2-) from drinking, and increased plasma [SO(4)(2-)] is prevented predominately through net tubular secretion. Tubular SO(4)(2-) secretion is accomplished by at least two electroneutral anion exchange processes in series. Movement of SO(4)(2-) into the cell across the basolateral membrane is pH dependent, suggesting SO(4)(2-)/OH(-) exchange. Luminal HCO(3)(-) and Cl(-) can facilitate SO(4)(2-) movement out of the cell across the brush-border membrane. The molecular identities of the anion exchangers are unknown but are probably homologues of SO(4)(2-) transporters in the mammalian SLC26 gene family. In all species tested, glucocorticoids increase renal SO(4)(2-) excretion. Whereas glucocorticoids downregulate SO(4)(2-) reabsorptive mechanisms in terrestrial vertebrates, they may also stimulate a mediated secretory flux. In the marine teleost, cortisol increases the level of SO(4)(2-)/HCO(3)(-) exchange at the brush-border membrane, tubular carbonic anhydrase (CA) activity, CAII protein, and a proportion of tubular SO(4)(2-) secretion that is CA dependent. CA activity is required for about one-half of this net SO(4)(2-) secretion but is also required for about one-half of the net reabsorption in bird proximal epithelium. A CA-SO(4)(2-)/anion exchanger metabolon arrangement is proposed that may speed both the secretory and reabsorptive processes.  相似文献   

4.
The oceans globally constitute an important sink for carbon dioxide (CO(2)) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO(2) and bicarbonate (HCO(3)(-)) is pH dependent, and, in normal, slightly alkaline seawater, [CO(2)] is typically low (approximately 10 mum). Second, the rate of CO(2) diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO(2) from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with delta-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with (125)I. The fixation of (14)CO(2) is strongly pH dependent, suggesting preferential uptake of CO(2) rather than HCO(3)(-), and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO(2) availability at the cell surface.  相似文献   

5.
Measurements of CO(2) permeability in oocytes and liposomes containing water channel aquaporin-1 (AQP1) have suggested that AQP1 is able to transport both water and CO(2). We studied the physiological consequences of CO(2) transport by AQP1 by comparing CO(2) permeabilities in erythrocytes and intact lung of wild-type and AQP1 null mice. Erythrocytes from wild-type mice strongly expressed AQP1 protein and had 7-fold greater osmotic water permeability than did erythrocytes from null mice. CO(2) permeability was measured from the rate of intracellular acidification in response to addition of CO(2)/HCO(3)(-) in a stopped-flow fluorometer using 2',7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) as a cytoplasmic pH indicator. In erythrocytes from wild-type mice, acidification was rapid (t((1)/(2)), 7.3 +/- 0.4 ms, S.E., n = 11 mice) and blocked by acetazolamide and increasing external pH (to decrease CO(2)/HCO(3)(-) ratio). Apparent CO(2) permeability (P(CO(2))) was not different in erythrocytes from wild-type (0.012 +/- 0.0008 cm/s) versus null (0.011 +/- 0.001 cm/s) mice. Lung CO(2) transport was measured in anesthetized, ventilated mice subjected to a decrease in inspired CO(2) content from 5% to 0%, producing an average decrease in arterial blood pCO(2) from 77 +/- 4 to 39 +/- 3 mm Hg (14 mice) with a t((1)/(2)) of 1.4 min. The pCO(2) values and kinetics of decreasing pCO(2) were not different in wild-type versus null mice. Because AQP1 deletion did not affect CO(2) transport in erythrocytes and lung, we re-examined CO(2) permeability in AQP1-reconstituted liposomes containing carbonic anhydrase (CA) and a fluorescent pH indicator. Whereas osmotic water permeability in AQP1-reconstituted liposomes was >100-fold greater than that in control liposomes, apparent P(CO(2)) (approximately 10(-3) cm/s) did not differ. Measurements using different CA concentrations and HgCl(2) indicated that liposome P(CO(2)) is unstirred layer-limited and that HgCl(2) slows acidification because of inhibition of CA rather than AQP1. These results provide direct evidence against physiologically significant AQP1-mediated CO(2) transport and establish an upper limit to the CO(2) permeability through single AQP1 water channels.  相似文献   

6.
The exit of HCO3- across the basolateral membrane of the proximal tubule cell occurs via the electrogenic cotransport of 3 eq of base per Na+. We have used basolateral membrane vesicles isolated from rabbit renal cortex to identify the ionic species transported via this pathway. Media of varying pH and pCO2 were employed to evaluate the independent effects of HCO3- and CO3(2-) on 22Na transport. Na+ uptake was stimulated when [CO3(2-)] was increased at constant [HCO3-], indicating the existence of a transport site for CO3(2-). In the presence of HCO3-, Na+ influx was stimulated more than 3-fold by an inward SO3(2-) gradient. SO3(2-)-stimulated Na+ influx was stilbene-sensitive, confirming that it occurs via the Na+-HCO3- cotransport system. Na+-SO3(2-) cotransport was demonstrated and found to have a 1:1 stoichiometry. Increasing [CO3(2-)] at constant [HCO3-] reduced the stimulation of Na+ influx by SO3(2-), suggesting competition between SO3(2-) and CO3(2-) at a common divalent anion site. Additional divalent anions that were tested, such as SO4(2-), oxalate2-, and HPO4(2-), did not interact at this site. SO3(2-) stimulation of Na+ influx was absolutely HCO3-(-)dependent and was increased as a function of [HCO3-], indicating the presence of a separate HCO3- site. Lastly, we tested whether Na+ interacts via ion pair formation with CO3(2-) or binds to a distinct site. Na+, which has lower affinity than Li+ for ion pair formation with CO3(2-), was found to have greater than 5-fold higher affinity than Li+ for the Na+-HCO3- cotransport system. Moreover, when its inhibition was studied as a function of [Na+], harmaline was found to be a competitive inhibitor of Na+ influx, indicating the existence of a distinct cation site. Our data are compatible with a model in which base transport across the basolateral membrane of the proximal tubule cell takes place via 1:1:1 cotransport of CO3(2-), HCO3-, and Na+ on distinct sites.  相似文献   

7.
Membrane transport pathways for transplacental transfer of CO2/HCO3 were investigated by assessing the possible presence of a Cl/HCO3 exchange mechanism in the maternal-facing membrane of human placental epithelial cells. Cl/HCO3 exchange was tested for in preparations of purified brush border membrane vesicles by 36Cl tracer flux measurements and determinations of acridine orange fluorescence changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake to levels approximately 2-fold greater than observed at equilibrium. Maneuvers designed to offset the development of ion gradient-induced diffusion potentials (valinomycin, Ko = Ki) significantly reduced HCO3- gradient-driven Cl- uptake but concentrative accumulation of Cl- persisted. Early time point determinations performed in the presumed absence of membrane potential suggests the reduced level of HCO3- gradient-driven Cl- uptake resulted from a more rapid dissipation of the HCO3- concentration gradient. Concentrative accumulation of Cl- was not observed in the presence of a pH gradient alone under 100% N2, suggesting a preference of HCO3- over OH- as a substrate for transport. As monitored by acridine orange fluorescence the Cl- gradient-dependent collapse of an imposed pH gradient (pHo 8.5/pHi 6) was accelerated in the presence of CO2/HCO3 when compared with its absence, indicating coupling of HCO3- influx to Cl- efflux. Increasing concentrations of the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid were observed to cause a stepwise reduction in HCO3- gradient-driven Cl- uptake (I50 approximately 25 microM) further suggesting the presence of a Cl/HCO3 exchange mechanism. The results of this study provide evidence for a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive Cl/HCO3 exchange mechanism in the maternal-facing membrane of human placental epithelial cells. The identification of an ion-coupled HCO3- transport pathway in placental epithelia may suggest functional roles in mediating transplacental transfer of CO2 as well as maintenance of fetal acid/base balance.  相似文献   

8.
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.  相似文献   

9.
Alvarez BV  Vilas GL  Casey JR 《The EMBO journal》2005,24(14):2499-2511
Carbonic anhydrases (CA) catalyze the reversible conversion of CO2 to HCO3-. Some bicarbonate transporters bind CA, forming a complex called a transport metabolon, to maximize the coupled catalytic/transport flux. SLC26A6, a plasma membrane Cl-/HCO3- exchanger with a suggested role in pancreatic HCO3- secretion, was found to bind the cytoplasmic enzyme CAII. Mutation of the identified CAII binding (CAB) site greatly reduced SLC26A6 activity, demonstrating the importance of the interaction. Regulation of SLC26A6 bicarbonate transport by protein kinase C (PKC) was investigated. Angiotensin II (AngII), which activates PKC, decreased Cl-/HCO3- exchange in cells coexpressing SLC26A6 and AT1a-AngII receptor. Activation of PKC reduced SLC26A6/CAII association in immunoprecipitates. Similarly, PKC activation displaced CAII from the plasma membrane, as monitored by immunofluorescence. Finally, mutation of a PKC site adjacent to the SLC26A6 CAB site rendered the transporter unresponsive to PKC. PKC therefore reduces CAII/SLC26A6 interaction, reducing bicarbonate transport rate. Taken together, our data support a mechanism for acute regulation of membrane transport: metabolon disruption.  相似文献   

10.
HCO3- exit across the basolateral membrane of the kidney proximal tubule cell is mediated via an electrogenic Na+:HCO3- cotransporter. We have studied the effect of pH on the activity of this cotransport system in basolateral membrane vesicles isolated from rabbit renal cortex. At constant internal pH 6.0, increasing the external pH and [HCO3-] increased the rate of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive 22Na+ influx into the vesicles. To determine the role of internal pH on the activity of the Na+:HCO3- cotransport system, the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange was measured in the absence of an initial pH and [HCO3-] gradient (pH(i) = pH(o), 5% CO2). Increasing the pH from 6.8 to 7.2 increased whereas, increasing the pH from 7.4 to 8.0 decreased the rate of 22Na+ influx via this exchange. Increasing pH at constant [HCO3-] (pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 10% CO2) reduced the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange. Increasing pH at constant [CO3(2-)](pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 60% CO2) was associated with reduced 22Na+ uptake. Decreasing the pH (pH(i) = pH(o) = 6.3, 60% CO2 versus pH(i) = pH(o) = 7.2, 5% CO2) was associated with a reduced rate of HCO3(-)-dependent Na(+)-Na+ exchange. We conclude that the Na+:HCO3- cotransporter displays a significant pH sensitivity profile with the cotransporter being more functional at pH 7.0-7.4 and less active at more acid or alkaline pH. In addition, the results suggest that the pH sensitivity arises at the inner surface of the basolateral membrane.  相似文献   

11.
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.  相似文献   

12.
The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3-. (c) There is no apparent amiloride-sensitive Na/H antiporter on the basolateral membrane of the rabbit PCT.  相似文献   

13.
Carbon dioxide transport through membranes   总被引:1,自引:0,他引:1  
Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO(2) transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO(2) diffusion was never confirmed experimentally. Here we have monitored transmembrane CO(2) flux (J(CO2)) by imposing a CO(2) concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that J(CO2) was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter J(CO2) confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO(2) hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO(2) permeability (3.2 +/- 1.6 cm/s) was estimated. It indicates that cellular CO(2) uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 mum. Consequently, facilitation of CO(2) transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO(2) permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not.  相似文献   

14.
Injection of carbonic anhydrase isoform II (CA) into Xenopus frog oocytes increased the rate of H+ flux via the rat monocarboxylate transporter isoform 1 (MCT1) expressed in the oocytes. MCT1 activity was assessed by changes of intracellular H+ concentration measured by pH-selective microelectrodes during application of lactate. CA-induced augmentation of the rate of H+ flux mediated by MCT1 was not inhibited by ethoxyzolamide (10 microM) and did not depend on the presence of added CO2/HCO3- but was suppressed by injection of an antibody against CA. Deleting the C terminus of the MCT1 greatly reduced its transport rate and removed transport facilitation by CA. Injected CA accelerated the CO2/HCO3(-)-induced acidification severalfold, which was blocked by ethoxyzolamide and was independent of MCT1 expression. Mass spectrometry confirmed activity of CA as injected into the frog oocytes. With pulldown assays we demonstrated a specific binding of CA to MCT1 that was not attributed to the C terminus of MCT1. Our results suggest that CA enhances MCT1 transport activity, independent of its enzymatic reaction center, presumably by binding to MCT1.  相似文献   

15.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

16.
Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (~10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.  相似文献   

17.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.  相似文献   

18.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

19.
The ability to move acid/base equivalents across the membrane of identified glial cells was investigated in isolated segmental ganglia of the leech Hirudo medicinalis. The intracellular pH (pHi) of the glial cells was measured with double-barreled, neutral-ligand, ion-sensitive microelectrodes during step changes of the external pH (pHo 7.4-7.0). The rate of intracellular acidification after the decrease in extracellular pH (pHo) was taken as a measure of the rate of acid/base transport across the glial membrane. Taking into account the total intracellular buffering power, the maximum rate of acid/base flux was 0.4 mM/min in CO2/HCO3-free saline, and 3.92 mM/min in the presence of 5% CO2/10 mM HCO-3, suggesting that the acid/base flux was dependent upon HCO3-. The rate of acid influx/base efflux increased both with the external HCO3- concentration and with increasing pHi (and hence HCO3-i). This suggested that the decrease in pHi was due to HCO3- efflux. The rapid decrease of pHi was accompanied by a HCO3--dependent depolarization of the glial membrane from -74 +/- 5 mV (n = 20) to -54 +/- 7 mV (n = 13). Both this depolarization and the rate of intracellular acidification were greatly reduced by the anion exchange inhibitor 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.3-0.5 mM), but were not affected by the removal of external Cl-. Reduction of the external Na+ concentration to one-tenth normal affected the rate of intracellular acidification only in the presence of CO2/HCO3-: the rate increased within the first 3-5 min after lowering external Na+; after longer exposures in low external Na+ the rate decreased, presumably due to depletion of intracellular Na+. Amiloride (1 mM), which inhibits the Na+-H+ exchange in these cells, had no effect on the rate of intracellular acidification. The intracellular Na activity (aNai) of the glial cells was measured to be 5.2 +/- 1.0 mM (n = 8) in CO2/HCO3-free saline; aNai increased to 7.3 +/- 2.2 mM (n = 8) after the addition of 5% CO2/24 mM HCO3-. Upon a change in pHo to 7.0 in the presence of CO2/HCO3-, aNai decreased by an average of 2 +/- 1.1 mM (n = 5); in CO2/HCO3--free saline external acidification produced a transient increase in aNai. It is concluded that, in the presence of CO2/HCO3-, the rate of intracellular acidification in glial cells is dominated by an outwardly directed, electrogenic Na+-HCO3-cotransport. Neurons, which do not possess this cotransporter, acidify at much lower rates under similar conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In the cyanobacterium Synechococcus UTEX 625, the yield of chlorophyll a fluorescence decreased in response to the transport-mediated accumulation of intracellular inorganic carbon (CO2 + HCO3- + CO32- = dissolved inorganic carbon [DIC]) and subsequently increased to a near-maximum level following photosynthetic depletion of the DIC pool. When DIC accumulation was mediated by the active Na+-dependent HCO3- transport system, the initial rate of fluorescence quenching was found to be highly correlated with the initial rate of H14CO3- transport (r = 0.96), and the extent of fluorescence quenching was correlated with the size of the internal DIC pool (r = 0.99). Na+-dependent HCO3- transport-mediated accumulation of DIC caused fluorescence quenching in either the presence or absence of the CO2 fixation inhibitor glycolaldehyde, indicating that quenching was not due simply to NADP+ reduction. The concentration of Na+ required to attain one-half the maximum rate of H14CO3- transport, at 20 [mu]M external HCO3-, declined from 9 to 1 mM as the external pH increased from 8 to 9.6. A similar pH dependency was observed when fluorescence quenching was used to determine the kinetic constants for HCO3- transport. In cells capable of Na+-dependent HCO3- transport, both the initial rate and extent of fluorescence quenching increased with increasing external HCO3-, saturating at about 150 [mu]M. In contrast Na+-independent HCO3- transport-mediated fluorescence quenching saturated at an HCO3- concentration of about 10 [mu]M. It was concluded that measurement of chlorophyll a fluorescence emission provided a convenient, but indirect, means of following Na+-dependent HCO3- transport and accumulation in Synechococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号