首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of 18beta-glycyrrhetinic acid (GRA), a pentacyclic triterpene belonging to the beta-amyrin series of plant origin, was evaluated in experimental visceral leishmaniasis. GRA is reported to have antitumor and immunoregulatory activities, which may be attributable in part to the induction of NO. Indeed, an 11-fold increase in NO production was observed with 20 microM GRA in mouse peritoneal macrophages infected with Leishmania donovani promastigotes. In addition to having appreciable inhibitory effects on amastigote multiplication within macrophages (IC(50), 4.6 microg/ml), complete elimination of liver and spleen parasite burden was achieved by GRA at a dose of 50 mg/kg/day, given three times, 5 days apart, in a 45-day mouse model of visceral leishmaniasis. GRA treatment resulted in reduced levels of IL-10 and IL-4, but increased levels of IL-12, IFN-gamma, TNF-alpha, and inducible NO synthase, reflecting a switch of CD4(+) differentiation from Th2 to Th1. This treatment is likely to activate immunity, thereby imparting resistance to reinfection. GRA induced NF-kappaB migration into the nucleus of parasite-infected cells and caused a diminishing presence of IkappaB in the cytoplasm. The lower level of cytoplasmic IkappaBalpha in GRA-treated cells resulted from increased phosphorylation of IkappaBalpha and higher activity of IkappaB kinase (IKK). Additional experiments demonstrated that GRA does not directly affect IKK activity. These results suggest that GRA exerts its effects at some level upstream of IKK in the signaling pathway and induces the production of proinflammatory mediators through a mechanism that, at least in part, involves induction of NF-kappaB activation.  相似文献   

2.
Experimental Leishmania major infection in mice has been of immense interest because it was among the first models to demonstrate the importance of the Th1/Th2 balance to infection outcome in vivo. However, the Th2 polarization that promotes the development of nonhealing cutaneous lesions in BALB/c mice has failed to adequately explain the mechanisms underlying nonhealing forms of leishmaniasis in humans. We have studied a L. major strain from a patient with nonhealing lesions that also produces nonhealing lesions with ulcerations and high parasite burden in conventionally resistant C57BL/6 mice. Surprisingly, these mice develop a strong, polarized, and sustained Th1 response, as evidenced by high levels of IFN-gamma produced by Leishmania-specific cells in the draining lymph node and in the ear lesion, and an absence of IL-4 or IL-13. The parasites fail to be effectively cleared despite high level induction of inducible NO synthase in the lesion, and despite their sensitivity to killing by IFN-gamma-activated macrophages in vitro. Infection of IL-10(-/-) mice, blockade of the IL-10R, or depletion of CD25(+) cells during the chronic phase promotes parasite killing, indicating that IL-10 and regulatory T cells play a role in rendering the Th1 responses ineffective at controlling infection in the skin. Mice with nonhealing primary lesions are nonetheless resistant to reinfection in the other ear. We suggest that nonhealing infections in animal models that are explained not by aberrant Th2 development, but by overactivation of homeostatic pathways designed to control inflammation, provide better models to understand nonhealing or reactivation forms of leishmaniasis in humans.  相似文献   

3.
Lacto-N-fucopentaose III (LNFPIII) is found in human milk and on the Th2 driving helminth parasite Schistosoma mansoni. This pentasaccharide drives Th2-type responses in vivo and in vitro when conjugated to a carrier. In an attempt to further understand early events in Th1 to Th2 switching, we examined phenotypic and functional changes in peritoneal cell populations in BALB/c and SCID mice following LNFPIII-dextran injection. We found that i.p. injection with LNFPIII-dextran resulted in rapid (<20 h) expansion of the Gr1(+) subpopulation of F4/80(+)/CD11b(+) peritoneal cells, comprising up to 75% of F4/80(+)/CD11b(+) peritoneal cells compared with 18% in uninjected or dextran-injected mice. Functionally, these cells suppressed anti-CD3- and anti-CD28-induced proliferation of naive CD4(+) T cells. LNFPIII-dextran also expanded functional Gr1(+) suppressor macrophages in SCID mice, demonstrating that expansion and function of suppressor cells did not require T cells. Suppression in both BALB/c and SCID mice was NO and IFN-gamma dependent, as addition of inhibitors of inducible NO synthase (N(G)-monomethyl-L-arginine), as well as anti-IFN-gamma Abs, restored the ability of CD4(+) T cells to proliferate in vitro. Depletion of the F4/80(+) subset of Gr1(+) cells eliminated the suppressive activity of peritoneal exudate cells showing that these cells were macrophages. Thus, LNFPIII-dextran rapidly expands the Gr1(+) suppressor macrophage population in the peritoneal cavities of otherwise naive mice. These Gr1(+) cells suppress proliferation of naive CD4(+) T cells in an NO-dependent mechanism, and may play a regulatory role in the switching of Th1- to Th2-type responses.  相似文献   

4.
Vaccination against visceral leishmaniasis has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine against visceral leishmaniasis is pressing. In this study, we demonstrate for the first time that a recombinant stage-specific hydrophilic surface protein of Leishmania donovani, recombinant hydrophilic acylated surface protein B1 (HASPB1), is able to confer protection against experimental challenge. Protection induced by rHASPB1 does not require adjuvant and, unlike soluble Leishmania Ag + IL-12, extends to the control of parasite burden in the spleen, an organ in which parasites usually persist and are refractory to a broad range of immunological and chemotherapeutic interventions. Both immunohistochemistry (for IL-12p40) and enzyme-linked immunospot assay (for IL-12p70) indicate that immunization with rHASPB1 results in IL-12 production by dendritic cells, although an analysis of Ab isotype responses to rHASPB1 suggests that this response is not sufficient in magnitude to induce a polarized Th1 response. Although both vaccinated and control-infected mice have equivalent frequencies of rHASPB1-specific CD4(+) T cells producing IFN-gamma, vaccine-induced protection correlates with the presence of rHASPB1-specific, IFN-gamma-producing CD8(+) T cells. Thus, we have identified a novel vaccine candidate Ag for visceral leishmaniasis, which appears to operate via a mechanism similar to that previously associated with DNA vaccination.  相似文献   

5.
We previously demonstrated that IL-10 is critical in the control of acute inflammation during development of Trichinella spiralis in the muscle. In this study, we use gene-targeted knockout mice, adoptive transfer of specific T cell populations, and in vivo Ab treatments to determine the mechanisms by which inflammation is controlled and effector T cell responses are moderated during muscle infection. We report that CD4(+)CD25(-) effector T cells, rather than CD4(+)CD25(+) regulatory T cells, suppress inflammation by an IL-10-dependent mechanism that limits IFN-gamma production and local inducible NO synthase induction. Conversely, we show that depletion of regulatory T cells during infection results in exaggerated Th2 responses. Finally, we provide evidence that, in the absence of IL-10, TGF-beta participates in control of local inflammation in infected muscle and promotes parasite survival.  相似文献   

6.
The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-gamma, TNF-alpha, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis.  相似文献   

7.
Leishmania major disseminates in genetically susceptible BALB/c mice to cause fatal disease. Progressive infection has been linked to the failure of parasite-specific Th1, IFN-gamma-producing, CD4+ T lymphocytes to expand and direct macrophage activation and control of intracellular parasitism. In contrast, Th2 CD4+ cell expansion accompanies disease progression. Immunomodulation using CD4 cell depletion at the time of infection results in control of infection and Th1 CD4+ cell expansion. A Th1-like cell line, H1A, was established from the draining lymph nodes of an anti-CD4-pretreated BALB/c mouse infected with L. major, H1A was CD4, TCR(+)-alpha/beta, and released IL-2 and IFN-gamma in response to parasite Ag. A Th2-like cell line, U1A, was established from the lymph node cells of an infected BALB/c mouse that was also CD4, TCR(+)-alpha/beta but released IL-4 and IL-5 after stimulation. Mice with severe combined immunodeficiency were reconstituted with H1A and U1A before infection with L. major. Non-reconstituted mice were unable to restrict parasite growth. Mice reconstituted with H1A healed infection, whereas mice reconstituted with U1A suffered exacerbation of disease. Analysis of spleen cells by flow cytometry confirmed the reconstitution of CD4+ cells in both instances, and stimulation with mitogen established that the lymphokine profile of the donor cells had been maintained during 6 to 8 wk of infection. Histologic analysis of the lesions confirmed migration of donated cells to sites of infection. Neutralization of IFN-gamma in H1A-reconstituted mice and IL-4 in U1A-reconstituted mice reversed the disease phenotype mediated by the two cell lines. These data demonstrate the capacity of CD4+ T cells alone to modulate both positively and negatively the course of leishmaniasis in a lymphokine-dependent manner.  相似文献   

8.
Active human visceral leishmaniasis (VL) is characterized by a progressive increase in visceral parasite burden, cachexia, massive splenomegaly, and hypergammaglobulinemia. In contrast, mice infected with Leishmania donovani, the most commonly studied model of VL, do not develop overt, progressive disease. Furthermore, mice control Leishmania infection through the generation of NO, an effector mechanism that does not have a clear role in human macrophage antimicrobial function. Remarkably, infection of the Syrian hamster (Mesocricetus auratus) with L. donovani reproduced the clinicopathological features of human VL, and investigation into the mechanisms of disease in the hamster revealed striking differences from the murine model. Uncontrolled parasite replication in the hamster liver, spleen, and bone marrow occurred despite a strong Th1-like cytokine (IL-2, IFN-gamma, and TNF/lymphotoxin) response in these organs, suggesting impairment of macrophage effector function. Indeed, throughout the course of infection, inducible NO synthase (iNOS, NOS2) mRNA or enzyme activity in liver or spleen tissue was not detected. In contrast, NOS2 mRNA and enzyme activity was readily detected in the spleens of infected mice. The impaired hamster NOS2 expression could not be explained by an absence of the NOS2 gene, overproduction of IL-4, defective TNF/lymphotoxin production (a potent second signal for NOS2 induction), or early dominant production of the deactivating cytokines IL-10 and TGF-beta. Thus, although a Th1-like cytokine response was prominent, the major antileishmanial effector mechanism that is responsible for control of infection in mice was absent throughout the course of progressive VL in the hamster.  相似文献   

9.
The expression of cytolytic activity and production of interferon gamma (IFN-gamma) by CD8(+) T cells is thought to play a fundamental role in protection against infection by viruses and intracellular parasites. Fran?ois Erard and Graham Le Gros have recently shown that CD8(+) T cells activated in the presence of interleukin 4 (IL-4) can switch development to a CD8(-)CD4(-)Th2-like phenotype that is not cytolytic and that does not produce IFN-gamma. Here they speculate on whether this IL-4-induced switch is used by the host to make a more-effective response against parasite invasion, or i f it is a host mechanism used by the parasite to evade protective CD8(+) T-cell responses.  相似文献   

10.
Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF   总被引:14,自引:0,他引:14  
The resolution of infections with the protozoan parasite Leishmania major in mice requires a Th1 response that is closely associated with the expression of IL-12, IFN-gamma, and inducible NO synthase. Previous Ab neutralization studies or the use of mice deficient for both TNF receptors suggested that TNF plays only a limited role in the control of parasite replication in vivo. In this study we demonstrate that resistant C57BL/6 (B6.WT) mice locally infected with L. major rapidly succumb to progressive visceral leishmaniasis after deletion of the TNF gene by homologous recombination. A reduction of the parasite inoculum to 3000 promastigotes did not prevent the fatal outcome of the disease. An influence of the altered morphology of secondary lymphoid organs in C57BL/6-TNF(-/-) (B6.TNF(-/-)) mice on the course of disease could be excluded by the generation of reciprocal bone marrow chimeras. Although infected B6.TNF(-/-) mice mounted an L. major-specific IFN-gamma response and expressed IL-12, the onset of the immune reaction was delayed. After in vitro stimulation, B6.TNF(-/-) inflammatory macrophages released 10-fold less NO in response to IFN-gamma than B6.WT cells. However, in the presence of a costimulus, e.g., L. major infection or LPS, the production of NO by B6.WT and B6.TNF(-/-) macrophages was comparable. In vivo, inducible NO synthase protein was readily detectable in skin lesions and draining lymph nodes of B6.TNF(-/-) mice, but its expression was more disperse and less focal in the absence of TNF. These are the first data to demonstrate that TNF is essential for the in vivo control of L. major.  相似文献   

11.
In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. Immunization with sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. The protection induced by this immunization protocol proved to be very effective. Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. CD4(+) and CD8(+) T cells were, however, responsible for the protection through the induction of IFN-gamma and NO.  相似文献   

12.
To investigate how CD8+ T cells interact with beta cells and local inflammatory cells in islets, we have isolated CD8+ T cell clones from nonobese diabetic (NOD) spleen that recognize and destroy both islets and the NOD insulinoma cell line NIT-1. The clones destroyed NOD islets with pre-existing inflammation better than islets without signs of inflammation. Islets from NOD-scid mice were destroyed only poorly, but that could be improved by adding IL-7 to the assay. Anti-IFN-gamma Abs inhibited destruction of infiltrated islets. Single islets were effective stimulators of IFN-gamma production by cloned CD8+ T cells, which varied >50-fold depending on the degree of islet infiltration. This effect of the islet mononuclear infiltrate could be mimicked by adding spleen cells to NIT-1 cells, which augmented IFN-gamma production above the level stimulated by NIT-1 cells alone. The enhancing effect of spleen cells could be attributed to their macrophage subpopulation and was not MHC restricted, although recognition of islet Ag by cloned CD8+ T cells and subsequent islet destruction was restricted to islets expressing H-2Db molecules. An inhibitor of inducible NO synthase inhibited destruction of inflamed islets by cloned CD8+ T cells. We propose that macrophages in inflamed islets provide a form of bystander costimulation of beta cell-specific CD8+ T cells. CD8+ T cells respond to Ag and costimulation by producing IFN-gamma that activates macrophages. Activated macrophages facilitate islet destruction by CD8+ T cells through a NO synthesis-dependent pathway.  相似文献   

13.
The phylogeny of Th1 and Th2 subsets has not been characterized mainly due to the limited information regarding cytokines in nonmammalian vertebrates. In this study, we characterize a Th1-like regulatory system focusing on the IL-18-regulated IFN-gamma secretion. Stimulation of splenocytes with chicken IL-18 induced high levels of IFN-gamma secretion. Depletion of either macrophages or CD4(+) T cells from the splenocyte cultures caused unresponsiveness to IL-18. In contrast, PBL were unresponsive to IL-18 in the presence or absence of macrophages, but IFN-gamma secretion was stimulated by suboptimal anti-TCR cross-linking combined with IL-18. Splenocytes from five different chicken lines responded equally well to the IL-18 treatment. LSL chicken splenocytes, however, responded only to IL-18 when stimulated either with optimal TCR cross-linking alone or suboptimal TCR cross-linking combined with IL-18. IL-18 not only induced IFN-gamma secretion, but also stimulated splenocyte proliferation. This IL-18-induced proliferation was compared with the effects observed with IL-2. Both cytokines activated the splenocytes as demonstrated by increased size and MHC class II Ag up-regulation in the case of IL-18. Phenotypic analyses following 6 days of culture revealed that IL-2 mainly affected the proliferation of CD8(+) cells, whereas IL-18 had an opposite effect and stimulated the proliferation of CD4(+) cells. Taken together, these results demonstrate the conservation of Th1-like proinflammatory responses in the chicken; they characterize IL-18 as a major growth factor of CD4(+) T cells and identify two distinct mechanisms of IL-18-induced IFN-gamma secretion.  相似文献   

14.
Functional roles of interleukin (IL-)6 in T cell response were investigated. Mice deficient in IL-6 and wild mice were immunized with antigens (myelin oligodendrocyte glycoprotein or methylated BSA) and production of IL-4 and interferon (IFN)-gamma by regional lymph nodes was measured. IL-6 deficiency led to an enhancement of IL-4 and an inhibition of IFN-gamma production. Moreover, polyclonal stimulation of spleen T cells from unimmunized IL-6-deficient mice with anti-CD3 plus anti-CD28 antibodies (Abs) demonstrated an enhancement of T helper (Th)(2)responses. The presence of IL-6, however, augmented IL-4 production but it inhibited IFN-gamma expression by spleen T cells in response to polyclonal stimulation and by antigen-primed spleen T cells in response to re-challenge with the antigen. In contrast, the induction of spleen CD4-positive T cells into Th(2)cells in vitro by the anti-CD3 plus IL-4 was completely suppressed by exogenously added IL-6, whereas Th(1)differentiation of T cells by the anti-CD3 plus IL-12 was not inhibited by the presence of IL-6. Thus, these results indicate that IL-6 physiologically could modulate qualitative T cell response and suggest that it augments Th(1)responses partly through its inhibitory capability of IL-4-induced Th(2)differentiation of naive T cells.  相似文献   

15.
Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4(+)CD44(+)CD25(+)GITR(+) lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni.  相似文献   

16.
TGF-β can induce Foxp3(+) inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12-independent and -dependent fashions by augmenting IFN-γ-activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β-directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity.  相似文献   

17.
Transplantation tolerance induced by neonatal injection of semiallogeneic spleen cells is associated in several strain combinations with a pathological syndrome caused by Th2 differentiation of donor-specific CD4(+) T lymphocytes. We investigated the role of host CD8(+) T cells in the regulation of this Th2 pathology. IgE serum levels and eosinophilia significantly increased in BALB/c mice neonatally injected with (A/J x BALB/c)F(1) spleen cells when CD8(+) T cells were depleted by administration of anti-CD8 mAb or when beta(2)-microglobulin-deficient mice were used as recipients. In parallel, increased serum levels of IL-5 and IL-13 were measured in blood of tolerant CD8(+) T cell-deficient mice. Whereas neonatally injected mice were unable to generate anti-donor cytotoxic effectors, their CD8(+) T cells were as efficient as control CD8(+) T cells in reducing the severity of Th2 pathology and in restoring donor-specific cytotoxicity in vitro after in vivo transfer in beta(2)-microglobulin-deficient mice. Likewise, CD8(+) T cells from control and tolerant mice equally down-regulated the production of Th2 cytokines by donor-specific CD4(+) T cells in vitro. The regulatory activity of CD8(+) T cells depended on their secretion of IFN-gamma for the control of IL-5 production but not for IL-4 or IL-13. Finally, we found that CD8(+) T cells from 3-day-old mice were already able to down-regulate IL-4, IL-5, and IL-13 production by CD4(+) T cells. We conclude that regulatory CD8(+) T cells controlling Th2 responses are functional in early life and escape neonatal tolerization.  相似文献   

18.
To investigate the role of HLA-DQ molecules and/or CD4(+) T cells in the pathogenesis of allergic asthma, we generated HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous class II (Abeta(null)) and CD4 genes and challenged them intranasally with short ragweed allergenic extract (SRW). We found that DQ6/CD4(null) mice developed a strong eosinophilic infiltration into the bronchoalveolar lavage and lung tissue, while DQ8/CD4(null) mice were normal. However, neither cytokines nor eosinophil peroxidase in the bronchoalveolar lavage of DQ6/CD4(null) mice was found. In addition, the airway reactivity to methacholine was elevated moderately in DQ6/CD4(null) mice compared with the high response in DQ/CD4(+) counterparts and was only partially augmented by CD4(+) T cell transfer. The DQ6/CD4(null) mice showed Th1/Th2-type cytokines and SRW-specific Abs in the immune sera in contrast to a direct Th2 response observed in DQ6/CD4(+) mice. The proliferative response of spleen mononuclear cells and peribronchial lymph node cells demonstrated that the response to SRW in DQ6/CD4(null) mice was mediated by HLA-DQ-restricted CD4(-)CD8(-)NK1.1(-) T cells. FACS analysis of PBMC and spleen mononuclear cells demonstrated an expansion of double-negative (DN) CD4(-)CD8(-)TCRalphabeta(+) T cells in SRW-treated DQ6/CD4(null) mice. These cells produced IL-4, IL-5, IL-13, and IFN-gamma when stimulated with immobilized anti-CD3. IL-5 ELISPOT assay revealed that DN T cells were the cellular origin of IL-5 in allergen-challenged DQ6/CD4(null) mice. Our study shows a role for HLA-DQ-restricted CD4(+) and DN T cells in the allergic response.  相似文献   

19.
NC/Nga (NC) mice raised under conventional conditions (Conv. NC mice) spontaneously develop dermatitis similar to human atopic dermatitis, whereas NC mice raised under the specific pathogen-free conditions do not develop dermatitis. In the present study, we show that the representative Th1 cytokine, IFN-gamma levels in the sera of NC mice, injected with either staphylococcal enterotoxin B or endotoxin (LPS), to be severalfold lower than those of normal mice. The low IFN-gamma response to staphylococcal enterotoxin B was correlated to the lack of regular Vbeta8(+) T cells and Vbeta8(+) NK T cells, and the low IFN-gamma response to LPS was correlated to an impaired IL-18 production of macrophages. The CD3-stimulated IL-4 production from liver and spleen T cells from Conv. NC mice in vitro was greatly augmented. The serum IL-4 levels of untreated Conv. NC mice also were higher than those of normal mice and specific pathogen-free NC mice. Treatment of Conv. NC mice either with IFN-gamma, IL-12, or IL-18 twice a week from 4 wk of age substantially inhibited the elevation of the serum IgE levels, serum IL-4 levels, and dermatitis, and IL-12 or IL-18 treatment also reduced the in vitro IL-4 production from CD3-stimulated liver T cells. The systemic deficiency in the Th1 response to bacterial stimulation thus leads to a Th2-dominant state and may induce an abnormal cellular immune response in the skin accompanied with an overproduction of IgE and a susceptibility to dermatitis in NC mice.  相似文献   

20.
In the present work we analyze the antigenicity of Leishmania major ribosomal proteins (LRP) in infected BALB/c mice. We show that BALB/c mice vaccinated with LRP in the presence of CpG oligodeoxynucleotides (CpG-ODN) were protected against the development of dermal pathology and showed a reduction in the parasite load after challenge with L. major. This protection was associated with the induction of an IL-12 dependent specific-IFN-gamma response mediated mainly by CD4(+) T cell, albeit a minor contribution of CD8(+) T cells cannot be ruled out. Induction of Th1 responses against LRP also resulted in a reversion of the Th2 responses associated with susceptibility. A marked reduction of IgG1 antibody titer against parasite antigens besides an impaired IL-4 and IL-10 cytokine production by parasite specific T cells was observed. In addition, we show that the administration of the LRP plus CpG-ODN preparation also conferred protection in the naturally resistant C57BL/6 mice. In this strain protection was associated with a LRP specific IFN-gamma production in lymph nodes draining the challenge site. We believe that these evolutionary conserved proteins, combined with adjuvants that favor Th1 responses, may be relevant components of a pan-Leishmania vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号