首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of CD34(+) haematopoietic stem cells into functional dendritic cells (DC) was investigated using the mAb CMRF-44 and other mAb against DC-associated markers. GM-CSF mobilized peripheral blood stem cells were obtained from healthy donors by leukapheresis. CD34(+) cells were purified using CD34(+)-positive selection,and subsequent immunomagnetic depletion of CD14 and CD2 cells. CD34(+) cells were cultured in medium supplemented with one or more of GM-CSF,TNF-alpha, IL-4 or IL-6. CMRF-44 Ag expression was monitored by flow cytometry, and DC function by allogeneic MLR and tetanus toxoid(TT) presentation assays. CD34(+) cells quickly acquired the CMRF-44 Ag when cultured in the presence of TNF-alpha.By day 3, more than 50% of the cells were double-positive for CD34 and CMRF-44. CD34 expression was gradually lost, so that by day 9, the majority of the cells were CD34(-)/CMRF-44(+).GM-CSF and TNF-alpha also induced CD40 expression, and up-regulation of CD54 and MHC class II on CD34(+) cells; their expression was correlated to the CMRF-44 Ag. Day 3 CD34(+)/CMRF-44(+) cells,but not CD34(+)/CMRF-44(-) cells, become potent APC when cultured further with GM-CSF plus TNF-alpha. These CMRF-44(+) cells were potent inducers of Th1-type immune response in the primary allogeneic MLR and present TT to autologous CD4(+) T cells. TNF-alpha alone is sufficient to induce CMRF-44 expression on CD34(+) cells, but in combination with GM-CSF expands the CMRF-44(+) population. CMRF-44 expression correlates with DC function and may be a useful early marker for commitment of CD34(+) cells to the DC differentiation pathway.  相似文献   

2.
The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increasedCD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.  相似文献   

3.
Dendritic cells (DC) generated from human umbilical cord blood might replace patients' DC in attempts to elicit tumor-specific immune response in cancer patients. We studied the efficiency of transfection of human cord blood DC with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene, to test if nonviral gene transfer would be a method to load DC with protein antigens for immunotherapy purposes. Cord blood mononuclear cells were cultured in serum-free medium in the presence of granulocyte-monocyte colony stimulating factor (GM-CSF), stem cell factor (SCF) and Flt-3 ligand (FL), to generate DC from their precursors, and thereafter transfected by electroporation. Maturation of DC was induced by stimulation with GM-CSF, SCF, FL and phorbol myristate acetate (PMA). Transfected DC strongly expressed EGFP, but transfection efficiency of DC, defined as HLA-DR(+) cells lacking lineage-specific markers, did not exceed 2.5%. Expression of the reporter gene was also demonstrated in the DC generated from transfected, purified CD34(+) cord blood cells, by stimulation with GM-CSF, SCF, FL, and tumor necrosis factor alpha (TNF-alpha). Transfection of CD34(+) cells was very efficient, but proliferation of the transfected cells was much reduced as compared to the untransfected cells. Therefore, the yield of transgene-expressing DC was relatively low. In conclusion, nonviral transfection of cord blood DC proved feasible, but considering the requirements for immunotherapy in cancer patients, transfection of differentiated DC or generation of DC from transfected hematopoietic stem cells provide only a limited number of DC expressing the transgene.  相似文献   

4.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

5.
6.
An increase in circulating mast cell colony-forming cells in asthma   总被引:7,自引:0,他引:7  
We compared a potential to generate mast cells among various sources of CD34(+) peripheral blood (PB) cells in the presence of stem cell factor (SCF) with or without thrombopoietin (TPO), using a serum-deprived liquid culture system. From the time course of relative numbers of tryptase-positive and chymase-positive cells in the cultured cells grown by CD34(+) PB cells of nonasthmatic healthy individuals treated with G-CSF, TPO appears to potentiate the SCF-dependent growth of mast cells without influencing the differentiation into mast cell lineage. CD34(+) PB cells from asthmatic patients in a stable condition generated significantly more mast cells under stimulation with SCF alone or SCF+TPO at 6 wk of culture than did steady-state CD34(+) PB cells of normal controls. Single-cell culture studies showed a substantial difference in the number of SCF-responsive or SCF+TPO-responsive mast cell progenitors in CD34(+) PB cells between the two groups. In the presence of TPO, CD34(+) PB cells from asthmatic children could respond to a suboptimal concentration of SCF to a greater extent, compared with the values obtained by those of normal controls. Six-week cultured mast cells of asthmatic subjects had maturation properties (intracellular histamine content and tryptase/chymase enzymatic activities) similar to those derived from mobilized CD34(+) PB cells of nonasthmatic subjects. An increase in a potential of circulating hemopoietic progenitors to differentiate into mast cell lineage may contribute to the recruitment of mast cells toward sites of asthmatic mucosal inflammation.  相似文献   

7.
Banu N  Rosenzweig M  Kim H  Bagley J  Pykett M 《Cytokine》2001,13(6):349-358
Studies aimed at the in vitro expansion of haematopoietic progenitor cells (HPCs) have suffered from the conflict of increasing cell numbers while maintaining long-term repopulating ability. We have developed a long-term bone marrow bioreactor culture system resembling the marrow-microenvironment that cultures HPCs in an inert, three-dimensional, porous biomatrix termed Cellfoam. Previous studies have shown that the short-term culture of CD34(+)cells in Cellfoam improved the maintenance and multipotency of haematopoietic stem cells compared to cells cultured on plastic dishes. In this study, we examined the effects of low concentrations of cytokines including stem cell factor (SCF), IL-3, and Flk-2/Flt-3 ligand, on the maintenance, preservation and multipotency of CD34(+) cells cultured for 3 or 6 weeks in Cellfoam. Analysis of cell yields using flow cytometry showed that in SCF and Flk-2/Flt-3 ligand-supplemented cultures as well as cytokine-free cultures, a higher number of CD45(+)34(+) and CD45(+)34(+)38(-) cells is observed in Cellfoam cultures as compared to plastic cultures. The function of cultured cells was evaluated in colony-forming assays. The data demonstrate that Cellfoam cultures supplemented with SCF and Flk-2/Flt-3 ligand resulted in a higher output of colony activity compared to plastic cultures. Analysis of CAFC (29 days) activity also demonstrated that primitive progenitors were maintained to a greater extent in Cellfoam cultures containing either no cytokines or low concentrations of early-acting cytokines. These data suggest that culture of HPCs in three-dimensional bioreactors such as Cellfoam for extended periods may benefit from the addition of low levels of early-acting cytokines, including SCF and Flk-2/Flt-3 ligand, resulting in high yields of cells that are enriched for multipotent haematopoietic progenitors. These findings demonstrate that a three-dimensional matrix promotes the survival of primitive HPCs in culture and may modulate the in vitro effects of cytokines.  相似文献   

8.
Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.  相似文献   

9.
We recently reported that splenic dendritic cells (DC) in rats can be separated into CD4(+) and CD4(-) subsets and that the CD4(-) subset exhibited a natural cytotoxic activity in vitro against tumor cells. Moreover, a recent report suggests that CD4(-) DC could have tolerogenic properties in vivo. In this study, we have analyzed the phenotype and in vitro T cell stimulatory activity of freshly isolated splenic DC subsets. Unlike the CD4(-) subset, CD4(+) splenic DC expressed CD5, CD90, and signal regulatory protein alpha molecules. Both fresh CD4(-) and CD4(+) DC displayed an immature phenotype, although CD4(+) cells constitutively expressed moderate levels of CD80. The half-life of the CD4(-), but not CD4(+) DC in vitro was extremely short but cells could be rescued from death by CD40 ligand, IL-3, or GM-CSF. The CD4(-) DC produced large amounts of the proinflammatory cytokines IL-12 and TNF-alpha and induced Th1 responses in allogeneic CD4(+) T cells, whereas the CD4(+) DC produced low amounts of IL-12 and no TNF-alpha, but induced Th1 and Th2 responses. As compared with the CD4(+) DC that strongly stimulated the proliferation of purified CD8(+) T cells, the CD4(-) DC exhibited a poor CD8(+) T cell stimulatory capacity that was substantially increased by CD40 stimulation. Therefore, as previously shown in mice and humans, we have identified the existence of a high IL-12-producing DC subset in the rat that induces Th1 responses. The fact that both the CD4(+) and CD4(-) DC subsets produced low amounts of IFN-alpha upon viral infection suggests that they are not related to plasmacytoid DC.  相似文献   

10.
Whether thymic dendritic cells (DC) are phenotypically and functionally distinct from the monocyte lineage DC is an important question. Human thymic progenitors differentiate into T, NK, and DC. The latter induce clonal deletion of autoreactive thymocytes and therefore might be different from their monocyte-derived counterparts. The cytokines needed for the differentiation of DC from thymic progenitors were also questioned, particularly the need for GM-CSF. We show that various cytokine combinations with or without GM-CSF generated DC from CD34+CD1a- but not from CD34+CD1a+ thymocytes. CD34+ thymic cells generated far fewer DC than their counterparts from the cord blood. The requirement for IL-7 was strict whereas GM-CSF was dispensable but nonetheless improved the yield of DC. CD14+ monocytic intermediates were not detected in these cultures unless macrophage-CSF (M-CSF) was added. Cultures in M-CSF generated CD14-CD1a+ DC precursors but also CD14+CD1a- cells. When sorted and recultured in GM-CSF, CD14+ cells down-regulated CD14 and up-regulated CD1a. TNF-alpha accelerated the differentiation of progenitors into DC and augmented MHC class II transport to the membrane, resulting in improved capacity to induce MLR. The trafficking of MHC class II molecules was studied by metabolic labeling and immunoprecipitation. MHC class II molecules were transported to the membrane in association with invariant chain isoforms in CD14+ (monocyte)-derived and in CD1a+ thymic-derived DC but not in monocytes. Thus, thymic progenitors can differentiate into DC along a preferential CD1a+ pathway but have conserved a CD14+ maturation capacity under M-CSF. Finally, CD1a+-derived thymic DC and monocyte-derived DC share very close Ag-processing machinery.  相似文献   

11.
Hematopoiesis is maintained by the activity of multipotent stem cells, which have the dual capacity to self-renew and to differentiate into all of the blood cell lineages. The major challenge of stem cells based regenerative therapy is to expand ex vivo the primitive compartment to increase transplantable stem cells number. The present study was designed to evaluate several culture systems for in vitro maintenance of umbilical cord blood stem cells. The influences of different growth conditions such as stromal feeder layer, cytokines supplement and placental conditioned medium (PCM) have been evaluated over a relatively short period of time on CD34(+) cell expansion and maintenance of clonogenic progenitors. When cells were expanded on feeder layer in the presence of added cytokines and PCM on average a 2.96-fold increase of CD34(+)CD71(-) and a 3.13-fold increase of CD34(+)HLA-DR(-) was observed. The total number of colony forming cells (35 +/- 2.65) indicated also that the yield of clonogenic progenitors obtained with a combination of all factors was two folds higher than each of these factors alone and ten time above control (3.67 +/- 2.52). In conclusion, the results of our study clearly show that the ex vivo expansion of hematopoietic progenitor cells obtained from human umbilical cord blood is dependent on controlled experimental conditions, which might be helpful when designing culture systems for clinical applications.  相似文献   

12.

Background

Limitations of the clinical efficacy of dendritic cell (DC)-based immunotherapy, as well as difficulties in their industrial production, are largely related to the limited number of autologous DCs from each patient. We here established a possible breakthrough, a simple and cytokine-based culture method to realize a log-scale order of functional murine DCs (>1,000-fold), which cells were used as a model before moving to human studies.

Methodology/Principal Findings

Floating cultivation of lineage-negative hematopoietic progenitors from bone marrow in an optimized cytokine cocktail (FLT3-L, IL-3, IL-6, and SCF) led to a stable log-scale proliferation of these cells, and a subsequent differentiation study using IL-4/GM-CSF revealed that 3-weeks of expansion was optimal to produce CD11b+/CD11c+ DC-like cells. The expanded DCs had typical features of conventional myeloid DCs in vitro and in vivo, including identical efficacy as tumor vaccines.

Conclusions/Significance

The concept of DC expansion should make a significant contribution to the progress of DC-based immunotherapy.  相似文献   

13.
The ability of acute myeloid leukaemia (AML) cells to acquire dendritic cell (DC)-like characteristics in vitro with a rapid culture method based either on the phorbol ester PMA or calcium ionophores has been studied in comparison to conventional AML-DC cultures with the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), tumour necrosis factor-alpha (TNF-alpha), interleukin-3 (IL-3), SCF, FLT3-L and IL-4. In all AML patients, antigen-presenting cells (APC) could be generated from leukaemic cells in 2 days by incubation with PMA or calcium ionophore (A23187 or ionomycin) in the presence as well as in the absence of IL-4. In 30 out of 36 patients APC could be generated after 2 weeks of culture in cytokine-enriched medium. AML-APC cultured with PMA or calcium ionophores immunophenotypically and functionally were at a more mature stage than those cultured in cytokine-enriched medium. The most mature APC were generated by calcium ionophore A23187 plus IL-4, as evidenced by the higher expression of CD40, CD80, CD86 and HLA-DR. Autologous T cell mediated cytotoxicity towards AML blast cells in vitro was observed in 2 cases tested. The persistence of cytogenetic abnormalities confirmed the leukaemic origin of the AML-APC. The generation of AML-APC was possible from freshly isolated as well as cryopreserved material. Our data show that generation of sufficient AML-APC by A23187 plus IL-4 is feasible, for vaccination purposes, in approximately 70% of AML specimens, offering a time-saving and cost-effective approach in preparing anti-leukaemia vaccines.  相似文献   

14.
摘要 目的:探讨人树突状细胞体外大量培养及鉴定方法。方法:采用免疫磁珠法分离纯化CD34+干细胞;采用含有TPO、SCF、Flt3L和IL-3的扩增培养基培养1周,以及含有SCF、Flt3L、GM-CSF和IL-4的分化培养基培养2-3周,获得CD34+细胞来源树突状细胞。采用普通光学显微镜观察细胞形态,牛鲍氏血细胞计数板进行细胞计数,荧光抗体标记、流式细胞仪检测细胞纯度和细胞表面共刺激分子的表达情况。结果:以含有TPO、SCF、Flt3L和IL-3的培养基扩展培养一周,及含有SCF、Flt3L、GM-CSF和IL-4的培养基诱导分化3周,可获得大量悬浮细胞;细胞数目扩增倍数约达50倍;普通光学显微镜下可见悬浮细胞有明显的树突状凸起;流式细胞术检测结果显示悬浮细胞中CD141和CD11c双阳性细胞(等同于单核细胞来源树突状细胞)比例达30%,此群细胞高表达HLA-DR和CD209,低表达共刺激分子CD80和CD86;细胞寿命较短,40天时培养体系中悬浮细胞和CD34+细胞来源树突状细胞数目急剧减少。结论:采用多细胞因子联合刺激可获得大量的树突状细胞,为树突状细胞的特性及功能学研究奠定了基础。  相似文献   

15.
Background aimsExpansion of hematopoietic progenitors ex vivo is currently investigated as a means of reducing cytopenia following stem cell transplantation. The principal objective of this study was to develop a new cytokine cocktail that would maximize the expansion of megakaryocyte (Mk) progenitors that could be used to reduce periods of thrombocytopenia.MethodsWe measured the individual and synergistic effects of six cytokines [stem cell factor (SCF), FLT-3 ligand (FL), interleukin (IL)-3, IL-6, IL-9 and IL-11] commonly used to expand cord blood (CB) CD34+ cells on the expansion of CB Mk progenitors and major myeloid populations by factorial design.ResultsThese results revealed an elaborate array of cytokine individual effects complemented by a large number of synergistic and antagonistic interaction effects. Notably, strong interactions with SCF were observed with most cytokines and its concentration level was the most influential factor for the expansion and differentiation kinetics of CB CD34+ cells. A response surface methodology was then applied to optimize the concentrations of the selected cytokines. The newly developed cocktail composed of SCF, thrombopoietin (TPO) and FL increased the expansion of Mk progenitors and maintained efficient expansion of clonogenic progenitors and CD34+ cells. CB cells expanded with the new cocktail were shown to provide good short- and long-term human platelet recovery and lymphomyeloid reconstitution in NOD/SCID mice.ConclusionsCollectively, these results define a complex cytokine network that regulates the growth and differentiation of immature and committed hematopoietic cells in culture, and confirm that cytokine interactions have major influences on the fate of hematopoietic cells.  相似文献   

16.
17.
Langerhans cell histiocytosis (LCH), previously known as histiocytosis X, is a reactive proliferative disease of unknown pathogenesis. Current therapies are based on nonspecific immunosuppression. Because multiple APCs, including Langerhans cells and macrophages, are involved in the lesion formation, we surmised that LCH is a disease of myeloid blood precursors. We found that lin(-) HLA-DR(+)CD11c-+ precursors of dendritic cells, able to give rise to either Langerhans cells or macrophages, are significantly (p = 0.004) increased in the blood of LCH patients. The analysis of serum cytokines in 24 patients demonstrated significantly elevated levels of hemopoietic cytokines such as fms-like tyrosine kinase ligand (FLT3-L, a dendritic cell-mobilizing factor, approximately 2-fold) and M-CSF ( approximately 4-fold). Higher levels of these cytokines correlated with patients having more extensive disease. Serum levels of FLT3-L and M-CSF were highest in high risk patients with extensive skin and/or multisystem involvement. Finally, patients with bone lesions had relatively higher levels of M-CSF and of stem cell factor. Thus, early hemopoietic cytokines such as FLT3-L, stem cell factor, and M-CSF maybe relevant in LCH pathogenesis and might be considered as novel therapeutic targets.  相似文献   

18.
19.
GM-CSF is critical for dendritic cell (DC) survival and differentiation in vitro. To study its effect on DC development and function in vivo, we used a gene transfer vector to transiently overexpress GM-CSF in mice. We found that up to 24% of splenocytes became CD11c+ and the number of DC increased up to 260-fold to 3 x 10(8) cells. DC numbers remained substantially elevated even 75 days after treatment. The DC population was either CD8alpha+CD4- or CD8alpha-CD4- but not CD8alpha+CD4+ or CD8alpha-CD4+. This differs substantially from subsets recruited in normal or Flt3 ligand-treated mice or using GM-CSF protein injections. GM-CSF-recruited DC secreted extremely high levels of TNF-alpha compared with minimal amounts in DC from normal or Flt3 ligand-treated mice. Recruited DC also produced elevated levels of IL-6 but almost no IFN-gamma. GM-CSF DC had robust immune function compared with controls. They had an increased rate of Ag capture and caused greater allogeneic and Ag-specific T cell stimulation. Furthermore, GM-CSF-recruited DC increased NK cell lytic activity after coculture. The enhanced T cell and NK cell immunostimulation by GM-CSF DC was in part dependent on their secretion of TNF-alpha. Our findings show that GM-CSF can have an important role in DC development and recruitment in vivo and has potential application to immunotherapy in recruiting massive numbers of DC with enhanced ability to activate effector cells.  相似文献   

20.
Many mechanisms involving TNF-alpha, Th1 responses, and Th17 responses are implicated in chronic inflammatory autoimmune disease. Recently, the clinical impact of anti-TNF therapy on disease progression has resulted in re-evaluation of the central role of this cytokine and engendered novel concept of TNF-dependent immunity. However, the overall relationship of TNF-alpha to pathogenesis is unclear. Here, we demonstrate a TNF-dependent differentiation pathway of dendritic cells (DC) evoking Th1 and Th17 responses. CD14(+) monocytes cultured in the presence of TNF-alpha and GM-CSF converted to CD14(+) CD1a(low) adherent cells with little capacity to stimulate T cells. On stimulation by LPS, however, they produced high levels of TNF-alpha, matrix metalloproteinase (MMP)-9, and IL-23 and differentiated either into mature DC or activated macrophages (M phi). The mature DC (CD83(+) CD70(+) HLA-DR (high) CD14(low)) expressed high levels of mRNA for IL-6, IL-15, and IL-23, induced naive CD4 T cells to produce IFN-gamma and TNF-alpha, and stimulated resting CD4 T cells to secret IL-17. Intriguingly, TNF-alpha added to the monocyte culture medium determined the magnitude of LPS-induced maturation and the functions of the derived DC. In contrast, the M phi (CD14(high)CD70(+)CD83(-)HLA-DR(-)) produced large amounts of MMP-9 and TNF-alpha without exogenous TNF stimulation. These results suggest that the TNF priming of monocytes controls Th1 and Th17 responses induced by mature DC, but not inflammation induced by activated M phi. Therefore, additional stimulation of monocytes with TNF-alpha may facilitate TNF-dependent adaptive immunity together with GM-CSF-stimulated M phi-mediated innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号