首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the responsiveness of vascular adenylate cyclase to vasoactive intestinal peptide (VIP) and parathyroid hormone (PTH) using preparations of cerebral microvessels and arteries. Cerebral microvessels obtained from rats, guinea-pigs, cattle, and pigs all responded potently to bovine (b) PTH-(1-34), whereas considerable between-species variability was observed in the responsiveness to VIP. The homologous peptide to VIP, PHI (porcine heptacosapeptide), stimulated adenylate cyclase in both rat microvessels and a broken-cell preparation of bovine arteries. The ED50 values for activation of bovine arterial adenylate cyclase by VIP, PHI, and bPTH-(1-34) were 6.9 nM, 10 nM, and 100 nM, respectively, with the following order of efficacy: VIP = PHI greater than bPTH-(1-34). The other related peptides, hpGRF (human pancreatic growth hormone releasing factor), secretin, and glucagon, and the fragment VIP-(10-28) were inactive. The PTH antagonist, [Nle8, Nle18, Tyr34]bPTH-(3-34) amide, inhibited bPTH-(1-34) activation of vascular adenylate cyclase but did not affect activation by VIP using either microvessels or arteries. VIP or PHI demonstrated an additive effect with bPTH-(1-34) on vascular adenylate cyclase activity. However, the effects of VIP and PHI were nonadditive with each other. These data suggest that VIP and bPTH-(1-34) activate cerebral vascular adenylate cyclase by interacting with pharmacologically distinct receptors, whereas PHI and VIP likely interact with a common receptor.  相似文献   

2.
The effects of vasoactive intestinal peptide (VIP) and several other peptides have been examined on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost (carp) retina. VIP was the most effective peptide examined, inducing a dose-related response, and an approximately fivefold increase in cyclic AMP production when used at a concentration of 10 microM. Porcine histidine isoleucine-containing peptide and secretin, peptides structurally related to VIP, also stimulated cyclic AMP accumulation, but at concentrations of 10 microM induced responses which were only approximately 40% and 10%, respectively, of the response observed with 10 microM VIP. In contrast, several other peptides, including glucagon, neurotensin, somatostatin, luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone, cholecystokinin octapeptide26-33, gastrin-releasing peptide, thyrotropin-releasing hormone, and VIP10-28 were totally inactive. The response to 10 microM VIP was not antagonized by several dopamine antagonists, indicating the presence of a population of specific VIP receptors coupled to adenylate cyclase, distinct from the population of dopamine receptors coupled to adenylate cyclase also known to be present in this tissue. Finally, experiments involving the use of fractions of isolated horizontal cells indicate that these neurons possess a population of VIP receptors coupled to cyclic AMP production which would appear to share a common pool of adenylate cyclase with a population of similarly coupled dopamine receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous histological, electrophysiological, and biochemical reports have addressed the hypothesis that serotonin functions as a neurotransmitter in mammalian retinas. We have tested the effect on the levels of cyclic AMP of the application of exogenous serotonin, 5-methoxytryptamine, melatonin, and 5-methoxydimethyl-tryptamine to isolated, incubated rabbit retinas. All indoleamines tested significantly elevated intracellular levels of cyclic AMP in both light- and dark-adapted, incubated, intact retinas, provided a phosphodiesterase inhibitor was present. In homogenates of rabbit retina, all indoleamines tested also markedly increased adenylate cyclase activity over basal levels. Maximal activity was observed with 50 microM indoleamine; addition of GTP augmented this increase. The increase in enzyme activity persisted in the presence of known antagonists of dopamine and serotonin 5-HT2-receptors, but was blocked by the mixed 5-HT1, 5-HT2-antagonist lysergic acid diethylamide. The retinal locations of this response have also been identified using layer microdissection techniques on freeze-dried samples obtained from rabbit eyecups suprafused with indoleamine plus phosphodiesterase inhibitor. Cyclic AMP levels were measured in discrete retinal layers of both light- and dark-adapted suprafused eyecups, and increased levels were observed primarily in the inner and outer plexiform layers, which contain the synapses of the retinal neurons.  相似文献   

4.
Adenylate cyclase activity and the effects of EGTA, 5'-guanylylimidodiphosphate (GPP(NH)P), and dopamine were measured in microdissected layers of rod-dominant (rabbit) and cone-dominant (ground squirrel) retinas, The distribution of basal enzyme activity was similar in both species, with the highest levels found in the inner plexiform and photoreceptor cell inner segment layers, EGTA inhibited adenylate cyclase in the inner retina of both species and stimulated activity in rabbit outer and inner segment layers, but had no effect in these layers from ground squirrel. Enzyme activity was stimulated in all regions by GPP(NH)P, except in the outer segments of the photoreceptors. Dopamine stimulated the enzyme in the outer and inner plexiform and inner nuclear layers in rabbit, but only in the inner plexiform layer in ground squirrel. These data demonstrate that the enzymatic characteristics of adenylate cyclase vary extensively from region to region in vertebrate retina and suggest that cyclic AMP may have multiple roles in this tissue. A model for the distribution of the different forms of adenylate cyclase in retina is proposed.  相似文献   

5.
The presence of vasoactive intestinal polypeptide (VIP) receptors coupled to an adenylate cyclase was demonstrated on membranes of neurons or glial cells grown in primary cultures originating from the cerebral cortex, striatum, and mesencephalon of mouse embryos. A biphasic pattern of activation was observed in all these cell types, involving distinct high- and low-apparent-affinity mechanisms. The absence of additive effects of VIP and 3,4-dihydroxyphenylethylamine (DA, dopamine), isoproterenol (ISO), and 5-hydroxytryptamine (5-HT, serotonin) suggests that the peptide receptors are colocated with each of the corresponding amine receptors on neuronal membranes of the three structures studied. The nonadditivity between the VIP- and ISO-induced responses on cortical and striatal glial membranes reveals as well a colocation of VIP and beta-adrenergic-sensitive adenylate cyclases on the same cells. A subpopulation of mesencephalic glia could possess only one of the two types of receptors, as a partial additivity of the VIP and ISO responses was seen. In addition, VIP modified the characteristics of the somatostatin inhibitory effect on adenylate cyclase activity of neuronal membranes from the cerebral cortex and striatum but not from those of the mesencephalon. On striatal and mesencephalic glial membranes the somatostatin inhibitory effect was observed only in the presence of VIP. However, as previously seen with ISO, the presence of VIP did not allow the appearance of a somatostatin inhibitory response on cortical glial membranes. This suggests that cortical glia are devoid of somatostatin receptors.  相似文献   

6.
We have examined the catecholamine-sensitive adenylate cyclase in the retina of the white perch (Roccus americanus). Both dopamine and the beta-adrenergic agonist isoproterenol stimulate cyclic AMP accumulation in this retina, but serotonin, an indoleamine, and phenylephrine, an alpha-adrenergic agonist, had no effect. The stimulation of adenylate cyclase by isoproterenol is more potent and effective than that of dopamine. The effects of dopamine and isoproterenol are mediated via independent dopamine and beta-adrenergic receptors. Haloperidol, a dopamine antagonist, blocks the stimulatory effect of dopamine but not of isoproterenol. Conversely, propranolol, a beta-adrenergic antagonist, blocks the stimulatory effect of isoproterenol but not of dopamine. The effects of dopamine and isoproterenol are not additive. In fractions of purified horizontal cells we found evidence for dopamine receptors linked to adenylate cyclase but did not find evidence for the presence of cyclase coupled beta-adrenergic receptors. The cellular location of the beta-adrenergic receptors is unknown. Our findings demonstrate the existence of both beta-adrenergic and dopamine receptors coupled to adenylate cyclase in the white perch retina. However, we did not find either epinephrine or norepinephrine, endogenous ligands of the beta-receptor, to be present in retinal extracts subjected to HPLC.  相似文献   

7.
Adenylate cyclase activity and the effects of various activators and inhibitors of this enzyme were measured in retinas from normal mice (C57BL/6J) and congenic animals with photoreceptor dystrophy. In normal retina, approximately 250 microM-ATP was required for half-maximal stimulation of the enzyme. Activity was supported by Mg2+ and Mn2+, but Ca2+ was ineffective. The enzyme was inhibited by EGTA and stimulated by 5'-guanylylimidodiphosphate (GPP(NH)P), dopamine, and NaF. The stimulatory effects of GPP(NH)P and dopamine were greater in the presence of EGTA. Examination of microdissected normal retinas revealed that the inner (neural) retina had adenylate cyclase activity four times that of the photoreceptor cell layers, and that EGTA inhibited activity in the inner retina, but had no effect in the outer retina. In dystrophic retinas basal enzyme activity was 60% higher than that in normal retina. The enzyme in this tissue was stimulated by EGTA, GPP(NH)P, and dopamine, and their effects were additive. These results indicate that adenylate cyclase activity in vertebrate retina is under complex regulation by substrate, divalent cations, guanine nucleotides, dopamine, and perhaps calmodulin. In addition, the data demonstrate that adenylate cyclase is not evenly distributed in the retina and that it is regulated differently in the inner and outer retina. Finally, the present results indicate that regulation of this enzyme in dystrophic retina may be qualitatively and quantitatively different from that in normal retina.  相似文献   

8.
Vasoactive intestinal peptide (VIP) and secretin are two related peptides that activate adenylate cyclase on membranes of striatal neurons and glial cells from embryonic mouse brain grown in primary culture. On the two cell types, the maximal activation that could be induced by secretin was only 40% above basal activity, which represented less than 15% of the maximal effect obtainable with VIP. From competition experiments performed on glial cells and the neuroblastoma X glioma hybrid, NG 108-15, a cell line known to possess both VIP and secretin sensitive-adenylate cyclase, we demonstrate that secretin does not activate VIP receptors. Furthermore, secretin has an apparent high affinity (EC50 10(-8) M) for its receptors on striatal neurons and NG 108-15 whereas an apparent low affinity (EC50 7 X 10(-6) M) was found on striatal glial cells. This suggests the existence of either two distinct secretin receptors or a desensitized form.  相似文献   

9.
Secretin, a gut-brain peptide, elicited cyclic AMP production in a clone of neuroblastoma cells derived from the C1300 mouse tumor. Adenylate cyclase (EC 4.6.1.1) in plasma membranes from these cells was stimulated by secretin greater than vasoactive intestinal peptide greater than peptide histidine isoleucine amide, but not by the related peptides glucagon, gastric inhibitory polypeptide, or human growth hormone releasing factor. Hill coefficients for stimulation approximated one and the response to submaximal peptide concentrations was additive, as expected for hormones competing for a single receptor associated with the enzyme. Binding of 125I-labeled secretin to the neuroblastoma plasma membranes was saturable, time-dependent, and reversible. The KD determined from kinetic and equilibrium binding studies approximated 1 nM. The binding site displayed marked ligand specificity that paralleled that for stimulation of adenylate cyclase. The secretin receptor was regulated by guanine nucleotides, with guanosine 5'-(beta, gamma-imino)-triphosphate being the most potent to accelerate the rate of dissociation of bound secretin. These findings demonstrate the functional association of the secretin receptor with adenylate cyclase in neuronally derived cells.  相似文献   

10.
Corticotropin-releasing factor (CRF) stimulates rat retinal adenylate cyclase activity in a concentration-dependent manner. The half-maximal effect is obtained at 50 nM CRF and the maximal stimulation corresponds to approximately 90% increase of basal enzyme activity. The CRF effect is counteracted by the CRF antagonist alpha-helical CRF 9-41 with a Ki value of 40 nM. Other CRF-like peptides such as sauvagine and urotensin I are as effective as CRF with a rank order of potency of urotensin I greater than or equal to sauvagine greater than CRF. The sauvagine and urotensin I effects are not additive with that elicited by CRF. Moreover, the CRF stimulation is not additive with the increase of enzyme activity produced by vasoactive intestinal peptide or dopamine. The CRF effect is independent of the concentration of free Ca2+, is optimal at 5-10 mM MgCl2, and requires GTP. The results indicate that rat retinal adenylate cyclase is modulated by CRF via a receptor-mediated mechanism.  相似文献   

11.
The presence of receptors, recognized by Vasoactive Intestinal Peptide (VIP) and Peptide having N-terminal Histidine and C-terminal Isoleucine amide (PHI), was documented in membranes from human right auricle and left ventricular cardiac muscle by the ability of these peptides to stimulate adenylate cyclase. The capacity of VIP and PHI to activate the enzyme was comparable, in auricle as well as ventricle membranes, the affinity of the system being moderately higher for VIP than for PHI. In auricles, dose-effect curves appeared compatible with the coexistence of high-affinity and low-affinity VIP receptors. PHI could not, however, discriminate these subclasses of VIP receptors.  相似文献   

12.
13.
Vasoactive intestinal peptide (VIP) and, to a lesser extent, glucagon were found to increase intracellular cyclic AMP rapidly in cultured glial (Müller) cells of the chick embryo retina. Although VIP elicited higher cyclic AMP accumulation than glucagon at each concentration tested, the half-maximal concentrations were similar, i.e., 6 X 10(-8) M for VIP and 8 X 10(-8) M for glucagon. Secretin had a minimal effect on cyclic AMP accumulation even at a very high (5 X 10(-6) M) concentration. Several other peptide and nonpeptide putative agonists also had little effect on cyclic AMP accumulation. The cultured Müller cell may thus be a useful model for examining VIP and glucagon effects on glial elements of the CNS.  相似文献   

14.
Addition of vasoactive intestinal peptide (VIP) to brain homogenates increased the activity of choline acetyltransferase (ChAT) but not that of acetylcholinesterase or glucose-6-phosphate dehydrogenase. Activity of ChAT was increased in the anterior hypothalamus and in the dorsal and ventral hippocampus, but not in the parietal cortex or posterior hypothalamus. Increased activity occurred rapidly after VIP addition to homogenates and was maximal at 10(-7)M concentration. Kinetic analysis indicates that the Vmax of the enzyme is increased and the Km for choline, but not acetyl-coenzyme A, is decreased in the presence of VIP. Results support a possible VIP-cholinergic interaction in the CNS.  相似文献   

15.
为利用基因工程技术获得重组血管活性肠肽(vasoactive intestinal peptide,VIP),根据大肠杆菌的密码偏好性,设计并人工合成编码28个氨基酸的VIP基因。克隆到表达载体PTWIN,构建重组质粒PTWIN-VIP,转化宿主菌E. coli Strain ER2566,构建表达工程菌。实现由重组VIP,内含肽与纤维素结合域(cellulose binding domain, CBD)组成的融合蛋白表达。融合蛋白经几丁质亲和层析纯化,通过改变温度和缓冲液PH值切割融合蛋白,获得目的多肽。所得的多肽经质谱测定分子量结果与理论值相符。生物活性分析表明,重组VIP能显著降低急性炎症小鼠血清中抵抗素的水平,发挥抗炎作用。重组VIP的制备及其抗炎活性的鉴定为其深入开发奠定了基础。  相似文献   

16.
Abstract: Vasoactive intestinal peptide (VIP) exhibits pronounced effects on the growth rate of cultured mouse embryonic day (E) 9.5 embryos and acts in tissue culture as a potent glial mitogen and neuron survival factor. However, previous studies using immunohistochemistry or in situ hybridization in the rat have not revealed the presence and location of VIP or VIP mRNA in the early developing embryo CNS. Using a sensitive in situ hybridization assay with a 33P-labeled riboprobe, we show here that the VIP gene is expressed at least as early as E11 in the mouse hindbrain. Northern blot analysis on RNA from brain dissected from mouse embryos beginning at E14 confirmed that a correct-size mRNA for VIP was present by E14 and at later time points. Expression of the VIP2 receptor gene was also detected by northern analysis in E14 mouse brains. These studies support the hypothesis that VIP produced by the embryo exerts important effects on embryonic nervous system development.  相似文献   

17.
We investigated the effect of acetylcholine (ACh) on the activation of adenylate cyclase by dopamine (DA) in a lysed synaptosomal preparation from rat striatum. ACh reduced both basal and the DA-activated adenylate cyclase with an apparent IC50 of approximately 1 microM. From a kinetic analysis it appeared that ACh reduced the Vmax for activation by DA but not the activation constant for DA. For most preparations the Vmax was reduced by 30-40%. The presence of atropine did not affect the activation of the enzyme by DA but it blocked the inhibition by ACh. Following 6-hydroxydopamine lesion of the nigrostriatal pathway, the enzyme became supersensitive to activation by DA and also more sensitive to inhibition by ACh. Inhibition of adenylate cyclase by ACh appeared to be rather specific for activation by DA, as ACh had no effect on activation of adenylate cyclase by the adenosine analogue N6-(L-2-phenylisopropyl)adenosine. These results indicate that some striatal muscarinic and dopaminergic receptors are probably coupled to the same adenylate cyclase domain. Moreover, they suggest a biochemical model for the dynamic balance of cholinergic and dopaminergic neurons that innervate the striatum.  相似文献   

18.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

19.
This study reports the characterization of receptors for vasoactive intestinal peptide (VIP) on membranes prepared from bovine cerebral arteries. By use of HPLC we prepared two purified monoiodinated VIP radioligands with nearly equivalent cerebral vasorelaxant potency as native VIP, [Tyr(125I)10 )VIP and [Tyr(125I)22]VIP. The former resulted in a higher proportion of specific binding to arterial membranes than the latter and was therefore thought to be the superior radioligand for receptor characterization. The binding of [Tyr(125I)10]VIP to cerebral arterial membranes was saturable, specific, reversible, and dependent on time and temperature. Scatchard analysis suggested the presence of a high- and a low-affinity binding site with KD values of 0.2 and 11 nM and receptor concentrations of 79 and 737 fmol/mg of protein, respectively. The dose-response curves for binding to the VIP receptor by the VIP-homologous peptides PHI, PHM, and rat growth hormone-releasing factor (GRF) were very similar to their dose-response curves for relaxation of cerebral arteries. The order of potency was VIP greater than PHM greater than PHI greater than rat GRF. It is suggested that the characteristics of the vascular VIP binding sites and the close correlation between the binding and vasorelaxant properties of VIP and its related peptides argue for the vascular binding sites being functional receptors for VIP.  相似文献   

20.
In the present study, we have applied the brain microdialysis technique to investigate the effect of the stimulation of adenylate cyclase on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the striatum of freely moving rats. Infusion of 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine, or forskolin produced a significant increase in the release of DA. The effect of 8-Br-cAMP was tetrodotoxin, Ca2+, and dose dependent and was saturable. 8-Br-cAMP also caused an increase in the output of DOPAC and HVA. No effects were seen on the output of 5-HIAA, except at the highest 8-Br-cAMP concentration studied. Infusion of 8-Br-cAMP (25 microM, 1.0 mM, and 3.3 mM) together with infusion of (-)-sulpiride (1 microM) or systemic administration of (+/-)-sulpiride (55 mumol/kg i.p.) produced an additive effect on the release of DA. Infusion or peripheral administration of (-)-N-0437 (1 microM or 1 mumol/kg) both decreased the 8-Br-cAMP-induced increase in the release of DA. These results demonstrate that cyclic AMP may stimulate the release of DA, but it is unlikely that this second messenger is linked to presynaptic D2 receptors controlling the release of DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号