首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts ATP, dATP, GTP, CTP, and UTP as diphosphoryl donors. All of these properties are characteristic for class II PRPP synthases. K(m) values for ATP and ribose 5-phosphate are 77 and 48 microM, respectively. Gel filtration reveals a molecular mass of the native enzyme of approximately 110 kD, which is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two enzymes are essentially conserved. Amino acid sequence comparison reveals that residues of class I PRPP synthases interacting with allosteric inhibitors are not conserved in class II PRPP synthases. Similarly, residues important for oligomerization of the B. subtilis enzyme show little conservation in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4.  相似文献   

2.
The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s at 65 degrees C, respectively, for the B. subtilis enzyme. Chemical cross-linking shows that both enzymes are hexamers. Vmax is determined as 440 micromol.min(-1).mg protein(-1) and Km values for ATP and ribose 5-phosphate are determined as 310 and 530 microM, respectively, for the B. caldolyticus enzyme. The enzyme requires 50 mM Pi as well as free Mg2+ for maximal activity. Manganese ion substitutes for Mg2+, but only at 30% of the activity obtained with Mg2+. ADP and GDP inhibit the B. caldolyticus enzyme in a cooperative fashion with Hill coefficients of 2.9 for ADP and 2.6 for GDP. Ki values are determined as 113 and 490 microm for ADP and GDP, respectively. At low concentrations ADP inhibition is linearly competitive with respect to ATP. A predicted structure of the B. caldolyticus enzyme based on homology modelling with the structure of B. subtilis 5-phospho-alpha-D-ribosyl 1-diphosphate synthase shows 92% of the amino acid differences to be on solvent exposed surfaces in the hexameric structure.  相似文献   

3.
An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its enzymatic activity has not been determined previously. The reaction sequence is ribose 5-phosphate --> ribose 1-phosphate --> ribose 1,5-bisphosphate --> PRPP. Alternatively, the synthesis of ribose 1-phosphate in the first step, catalyzed by phosphopentomutase, can proceed via phosphorolysis of a nucleoside, as follows: guanosine + P(i) --> guanine + ribose 1-phosphate. The ribose 1,5-bisphosphokinase-catalyzed phosphorylation of ribose 1,5-bisphosphate is a novel reaction and represents the first assignment of a specific chemical reaction to a polypeptide required for cleavage of a carbon-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP as a phosphoryl donor, and it used ribose 1,5-bisphosphate but not ribose, ribose 1-phosphate, or ribose 5-phosphate as a phosphoryl acceptor. The identity of the reaction product as PRPP was confirmed by coupling the ribose 1,5-bisphosphokinase activity to the activity of xanthine phosphoribosyltransferase in the presence of xanthine, which resulted in the formation of 5'-XMP, and by cochromatography of the reaction product with authentic PRPP.  相似文献   

4.
ATP synthase couples transmembrane proton transport, driven by the proton motive force (pmf), to the synthesis of ATP from ADP and inorganic phosphate (P(i)). In certain bacteria, the reaction is reversed and the enzyme generates pmf, working as a proton-pumping ATPase. The ATPase activity of bacterial enzymes is prone to inhibition by both ADP and the C-terminal domain of subunit epsilon. We studied the effects of ADP, P(i), pmf, and the C-terminal domain of subunit epsilon on the ATPase activity of thermophilic Bacillus PS3 and Escherichia coli ATP synthases. We found that pmf relieved ADP inhibition during steady-state ATP hydrolysis, but only in the presence of P(i). The C-terminal domain of subunit epsilon in the Bacillus PS3 enzyme enhanced ADP inhibition by counteracting the effects of pmf. It appears that these features allow the enzyme to promptly respond to changes in the ATP:ADP ratio and in pmf levels in order to avoid potentially wasteful ATP hydrolysis in vivo.  相似文献   

5.
The influence of ATP and KCl on the quaternary structure and the enzymatic activity of D-glyceraldehyde-3-phosphate dehydrogenase from yeast(Y-GAPDH) has been studied by ultracentrifugation, gel chromatography and standard optical tests. In 0.1 M imidazole buffer pH 7.0, at low temperature (0°C) both complete deactivation and dissociation to dimers occur in the presence of 2 mM ATP and 0.1 M 2-mercaptoethanol. In 0.067 M phosphate buffer pH 7.0, containing 2 mM ATP and 1 mM dithiothreitol, only slight deactivation paralleled by minor changes of the native quaternary structure is observed. In this same buffer, increasing temperature leads to stabilization of both the tetrameric state and the catalytic activity of the enzyme. Deactivation and dissociation in the presence of 0.15 M KCl (in 0.2 M glycine buffer 9.1 ≥ pH ≥ 8.0) is a function of pH rather than electrolyte concentration; at neutral pH the enzyme is stabilized in its native state. Contrary to earlier assumptions in the literature, ATP and KCl under the above experimental conditions do not appear to play an important role in the in vivo regulation of Y-GAPDH.  相似文献   

6.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP: D-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5'-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di- and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

7.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP:d-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5′-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di-, and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

8.
The pyruvate carboxylase (PYC) of the hyperthermophilic, strictly hydrogenotrophic, autotrophic and marine methanarchaeon Methanococcus jannaschii was purified to homogeneity. Optimal activity was at pH 8.5, > or = 80 degrees C, and a KCl concentration of 0.175 M. This enzyme is the most thermophilic PYC so far studied. Unlike the Methanobacterium thermoautotrophicum enzyme, Mc. jannaschii PYC was expressed in cells grown without an external source of biotin and in the purified form was stable during storage at 4, -20 and -80 degrees C. However, it was rapidly inactivated at 80 degrees C. The enzyme was insensitive to aspartate and glutamate, mildly inhibited by alpha-ketoglutarate, and was strongly inhibited by ATP and ADP (apparent Km, for ATP, 0.374 +/- 0.039 mM; apparent Ki for ATP, 5.34 +/- 2.14 mM; Ki for ADP, 0.89 +/- 0.18 mM). It was also strongly inhibited when the Mg2+ concentration in the assay exceeded that of ATP. Thus, this stable PYC could serve as a model for mechanistic studies on archaeal PYCs. It was apparently an alpha4beta4-type PYC composed of a non-biotinylated 55.5-kDa subunit (PYCA) and a 64.2-kDa biotinylated subunit (PYCB). The determined NH2-terminal sequences for these subunits provided additional support for our earlier proposal to rename the ORFs MJ1229 and MJ1231 in the NCBI Mc. jannaschii genome sequence database as PYCA and PYCB, respectively; even very recently, these have been misidentified as a subunit of acetyl-CoA carbxoylase (AccC) and the alpha-subunit of ion-pumping oxaloacetate decarboxylase (OADalpha), respectively.  相似文献   

9.
The binding sites for the two cations essential for the catalytic function of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthases have been identified from the structure of the Bacillus subtilis phosphoribosyldiphosphate synthetase (PRPPsase) with bound Cd(2+). The structure determined from X-ray diffraction data to 2.8-A resolution reveals the same hexameric arrangement of the subunits that was observed in the complexes of the enzyme with the activator sulfate and the allosteric inhibitor ADP. Two cation binding sites were localized in each of the two domains of the subunits that compose the hexamer; each domain of the subunit has an associated cation. In addition to the bound Cd(2+), the Cd(2+)-PRPPsase structure contains a sulfate ion in the regulatory site, a sulfate ion at the ribose-5-phosphate binding site, and an AMP moiety at the ATP binding site. Comparison of the Cd(2+)-PRPPsase to the structures of the PRPPsase complexed with sulfate and mADP reveals the structural rearrangement induced by the binding of the free cation, which is essential for the initiation of the reaction. The comparison to the cPRPP complex of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli, a type I phosphoribosyltransferase, provided information about the binding of PRPP. This strongly indicates that the binding of both substrates must lead to a stabilized conformation of the loop region, which remains unresolved in the known PRPPsase complex structures.  相似文献   

10.
The biosynthesis of the enzyme pyruvate kinase (E.C. 2.7.1.40) of Alcaligenes eutrophus (Hydrogenomonas eutropha) H 16 was influenced by the carbon and energy source. After growth on gluconate the specific enzyme activity was high while acetate grown cells exhibited lower activities (340 and 55 mumoles/min-g protein, respectively). The pyruvate kinase from autotrophically grown cells was purified 110-fold. The enzyme was characterized by homotropic cooperative interactions with the substrate phosphoenolpyruvate, the activators AMP, ribose 5-phosphate, glucose-6-phosphate and the inhibitor ortho-phosphate. In addition to phosphate ATP caused inhibition but in this case nonsigmoidal kinetics was obtained. The half maximal substrate saturation constant S0.5 for phosphoenolpyruvate in the absence of any effectors was 0.12 mM, in the presence of 1 mM ribose-5-phosphate 0.07 mM, and with 9 mM phosphate 0.67 mM. The corresponding Hill values were 0.96, 1.1 and 2.75. The ADP saturation curve was hyperbolic even in the presence of the effectors, the Km value was 0.14 mM ADP. When the known intracellular metabolite concentrations in A. eutrophus H 16 were compared with the regulatory sensitivity of the enzyme, it appeared that under the conditions in vivo the inhibition by ATP was more important than the regulation by the allosteric effectors.  相似文献   

11.
The crystal structure of Escherichia coli phosphofructokinase complexed with its reaction products fructose 1,6-bisphosphate (Fru1,6P) and ADP/Mg2+, and the allosteric activator ADP/Mg2+, has been determined at 2.4 A resolution. The structure was solved by molecular replacement using the known structure of Bacillus stearothermophilus phosphofructokinase, and has been refined to a crystallographic R-factor of 0.165 for all data. The crystallization mixture contained the substrate fructose 6-phosphate, but the electron density maps showed clearly the presence of the product fructose 1,6-bisphosphate, presumably formed by the enzyme reaction with contaminating ATP. The crystal consists of tetrameric molecules with subunits in two different conformations despite their chemical identity. The magnesium ion in the "closed" subunit bridges the phosphate groups of the two products. In the "open" subunit, the products are about 1.5 A further apart, with the Mg2+ bound only to ADP. These two conformations probably represent two successive stages along the reaction pathway, in which the closure of the subunit is required to bring the substrates sufficiently close to react. This conformational change within the subunit is distinct from the quaternary structure change seen previously in the inactive T-state conformation. It is probably not involved in the co-operativity or allosteric control of the enzyme, since the co-operative product fructose 1,6-bisphosphate is not moved, nor are the subunit interfaces changed. The structure of the enzyme is similar to that of B. stearothermophilus phosphofructokinase, and confirms the location of the sites for the two reaction products (or substrates), and of the effector site binding the activator ADP/Mg2+. However, this structure gives a clearer picture of the active site, and of the interactions between the enzyme and its reaction products.  相似文献   

12.
The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed by chemical determination of the amino acid sequence of a tryptic peptide derived from the purified mutant enzyme. The mutation lies at the N-terminal end of a 16 residue sequence that is highly conserved in E. coli, Bacillus subtilis, and rat PRPP synthetases and has the following consensus sequence: DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent cation binds to PRPP synthetase and serves as a bridge to the alpha-phosphate of ATP and AMP at the active site. The prsA1 mutation appears to alter this divalent cation site.  相似文献   

13.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

14.
The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i). ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i) would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme.  相似文献   

15.
Phosphoribosyl pyrophosphate (PRPP) synthetase catalyzes the transfer of the pyrophosphate group from ATP to ribose-5-phosphate (R5P) yielding PRPP and AMP. PRPP is an essential metabolite that plays a central role in cellular metabolism. The enzyme from a thermophilic archaeon Thermoplasma volcanium (Tv) was expressed in Escherichia coli, crystallized, and its X-ray molecular structure was determined in a complex with its substrate R5P and with substrate analogs β,γ-methylene ATP and ADP in two monoclinic crystal forms, P21. The β,γ-methylene ATP- and the ADP-bound binary structures were determined from crystals grown from ammonium sulfate solutions; these crystals diffracted to 1.8 Å and 1.5 Å resolutions, respectively. Crystals of the ternary complex with ADP-Mg2+ and R5P were grown from a polyethylene glycol solution in the absence of sulfate ions, and they diffracted to 1.8 Å resolution; the unit cell is approximately double the size of the unit cell of the crystals grown in the presence of sulfate. The Tv PRPP synthetase adopts two conformations, open and closed, at different stages in the catalytic cycle. The binding of substrates, R5P and ATP, occurs with PRPP synthetase in the open conformation, whereas catalysis presumably takes place with PRPP synthetase in the closed conformation. The Tv PRPP synthetase forms a biological dimer in contrast to the tetrameric or hexameric quaternary structures of the Methanocaldococcus jannaschii and Bacillus subtilis PRPP synthetases, respectively.  相似文献   

16.
We have investigated the de novo synthesis of intermediates of purine nucleotides in 3T6 fibroblasts and determined the manner by which the activity of this pathway is increased in resting cells by the addition of fresh serum. Within 30 minutes after stimulation, 3T6 cells began to synthesize increased amounts of purines by the de novo pathway as measured by increased amounts of formylglycinamide ribonucleotide, a representative intermediate of this pathway. Within 15 minutes after serum-stimulation 3T6 cells exhibited a substantial increase in their capacity to synthesize ribose compounds, particularly in the form of 5-phosphoribosylpyrophosphate (PRPP). The availability of PRPP appeared to be limiting for the synthesis of purine nucleotides in resting fibroblasts, but not necessarily in serum-stimulated cells. The amount of the enzyme PRPP synthetase as measured in vitro remained constant for at least the first four hours. Therefore, a study was made of various compounds known to activate PRPP synthetase in vitro. No evidence was found that suggested involvement of concentrations of cyclic nucleotides or phosphate. Experiments with methylene blue, an artificial electron acceptor that stimulates the production of ribose 5-phosphate by the hexose monophosphate shunt, indicated that one of the immediate consequences of the addition of serum is increased cycling of the pyridine nucleotide coenzymes, NADP+ and NADPH, and that the rapid increase in formation of ribose compounds and, consequently, purine nucleotides was caused as a result of modulation by this coenzyme. The relative ration of ATP:ADP:AMP as well as their concentrations remain constant in resting and serum-stimulated cells under normal assay conditions. However, there was a substantial decrease in ATP concentrations with a corresponding increase in AMP concentration with methylene blue in the assay buffer. The production of AMP from ATP was 5-fold greater in the serum-stimulated than in the resting fibroblasts. The increased production of AMP is thus serum-dependent and may reflect a basic enzymatic function of proliferative as compared to resting cells.  相似文献   

17.
Coupling with electrochemical proton gradient, ATP synthase (F(0)F(1)) synthesizes ATP from ADP and phosphate. Mutational studies on high-resolution structure have been useful in understanding this complicated membrane enzyme. We discuss mainly the mechanism of catalysis in the beta subunit of F(1) sector and roles of the gamma subunit in energy coupling. The gamma-subunit rotation during catalysis is also discussed.  相似文献   

18.
The open reading frame MJ1184 of Methanococcus jannaschii with similarity to riboflavin synthase of Methanothermobacter thermoautotrophicus was cloned into an expression vector but was poorly expressed in an Escherichia coli host strain. However, a synthetic open reading frame that was optimized for expression in E.coli directed the synthesis of abundant amounts of a protein with an apparent subunit mass of 17.5 kDa. The protein was purified to apparent homogeneity. Hydrodynamic studies indicated a relative mass of 88 kDa suggesting a homopentamer structure. The enzyme was shown to catalyze the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 24 nmol mg(-1) min(-1) at 40 degrees C. Divalent metal ions, preferably manganese or magnesium, are required for maximum activity. In contrast to pentameric archaeal type riboflavin synthases, orthologs from plants, fungi and eubacteria are trimeric proteins characterized by an internal sequence repeat with similar folding patterns. In these organisms the reaction is achieved by binding the two substrate molecules in an antiparallel orientation. With the enzyme of M.jannaschii, 13C NMR spectroscopy with 13C-labeled 6,7-dimethyl-8-ribityllumazine samples as substrates showed that the regiochemistry of the dismutation reaction is the same as observed in eubacteria and eukaryotes, however, in a non-pseudo-c2 symmetric environment. Whereas the riboflavin synthases of M.jannaschii and M.thermoautotrophicus are devoid of similarity with those of eubacteria and eukaryotes, they have significant sequence similarity with 6,7-dimethyl-8-ribityllumazine synthases catalyzing the penultimate step of riboflavin biosynthesis. 6,7-Dimethyl-8-ribityllumazine synthase and the archaeal riboflavin synthase appear to have diverged early in the evolution of Archaea from a common ancestor. Some Archaea have eubacterial type riboflavin synthases which may have been acquired by lateral gene transfer.  相似文献   

19.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

20.
Glycogen synthase I, purified from bovine heart, had a specific activity of 33 units/mg and gave a single band on sodium dodecyl sulfate gel electrophoresis with a subunit molecular weight of 86,000. The enzyme was phosphorylated with cAMP-dependent protein kinase catalytic subunit, also isolated from heart. With 10 microM ATP, only one phosphate group was incorporated per subunit of glycogen synthase. The phosphorylation decreased the per cent of glycogen synthase I from 0.95 to 0.50 when activity was determined by assays with Na2SO4 and glucose 6-phosphate. Glycogen synthase containing one phosphate per subunit was designated GS-1. One additional phosphate was incorporated per synthase subunit when ATP was increased to 0.5 mM and the percent glycogen synthase I decreased from 0.50 to < 0.05. This enzyme form was designated GS-1,2. Conversion of GS-1 to Gs-1,2 gave cooperative kinetics with ATP concentration and a half-maximal stimulation at approximately 40 microM. Phosphorylation of GS-1 could also be achieved by adding other non-substrate nucleotide triphosphates such as ITP and UTP along with 10 microM ATP. Glucose-6-P and Na2SO4 were without effect on this phosphorylation reaction. Two separate peptides were obtained after CNBr cleavage of 32P-labeled GS-1,2 and only one from GS-1. Both enzyme forms contained a single phosphorylated peptide in common. Thus, heart glycogen synthase may be phosphorylated specifically in either of two different sites using appropriate concentrations of ATP. ATP acts as a substrate for the protein kinase and also affects the availability of a second site to phosphorylation by cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号