共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins 下载免费PDF全文
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein gp120 mediates receptor binding and is the major target for neutralizing antibodies. A broadly neutralizing antibody response is likely to be a critical component of the immune response against HIV-1. Although antibodies against monomeric gp120 are readily elicited in immunized individuals, these antibodies are inefficient in neutralizing primary HIV-1 isolates. As a chronic pathogen, HIV-1 has evolved to avoid an optimal host response by a number of immune escape mechanisms. Monomeric gp120 that has dissociated from the functional trimer presents irrelevant epitopes that are not accessible on functional trimeric envelope glycoproteins. The resulting low level of antigenic cross-reactivity between monomeric gp120 and the functional spike may contribute to the inability of monomeric gp120 to elicit broadly neutralizing antibodies. Attempts to generate native, trimeric envelope glycoproteins as immunogens have been frustrated by both the lability of the gp120-gp41 interaction and the weak association between gp120 subunits. Here, we present solid-phase HIV-1 gp160DeltaCT (cytoplasmic tail-deleted) proteoliposomes (PLs) containing native, trimeric envelope glycoproteins in a physiologic membrane setting. We present data that indicate that the gp160DeltaCT glycoproteins on PLs are trimers and are recognized by several relevant conformational ligands in a manner similar to that for gp160DeltaCT oligomers expressed on the cell surface. The PLs represent a significant advance over present envelope glycoprotein formulations as candidate immunogens for HIV vaccine design and development. 相似文献
3.
4.
Th cell-independent immune responses to chimeric hemagglutinin/simian human immunodeficiency virus-like particles vaccine 总被引:2,自引:0,他引:2
Yao Q Zhang R Guo L Li M Chen C 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(3):1951-1958
CD4(+) Th cells are believed to be essential for the induction of humoral and cellular immune responses. In this study we tested the effect and possible mechanisms of the major antigenic component in influenza, hemagglutinin (HA), in helping HIV Env to induce immune responses in CD4(+) T cell knockout (CD4 KO) mice. Simian HIV virus-like particles (SHIV VLPs) or phenotypically mixed chimeric influenza HA/SHIV VLPs were used as immunogens to immunize CD4 KO mice either i.p. or intranasally (i.n.). We found that chimeric HA/SHIV VLPs significantly induced a greater IgG Ab response in both i.p. and i.n. immunized mice and a greater IgA Ab response in mucosal washes in i.n. immunized mice compared with SHIV VLPs. Importantly, chimeric HA/SHIV VLPs induced approximately 3-fold higher neutralizing Ab titers against HIV 89.6 than SHIV VLPs in the absence of CD4(+) T cell help. There was also approximately 40% more specific lysis of the HIV Env-expressing target cells in chimeric HA/SHIV VLP-immunized than in SHIV VLP-immunized CD4 KO mouse splenocytes. Moreover, we have found that chimeric HA/SHIV VLPs could efficiently bind and activate dendritic cells and stimulate the activated dendritic cells to secret TNF-alpha and IFN-gamma. Therefore, chimeric HA/SHIV VLPs could efficiently prime and activate APCs, which could, in turn, induce immune responses in a CD4(+) T cell-independent manner. This study suggests a novel adjuvant role of influenza HA as well as a new strategy to develop more effective therapeutic vaccines for AIDS patients with low CD4(+) T cell counts. 相似文献
5.
The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. 总被引:38,自引:3,他引:38 下载免费PDF全文
M Delchambre D Gheysen D Thines C Thiriart E Jacobs E Verdin M Horth A Burny F Bex 《The EMBO journal》1989,8(9):2653-2660
To examine the potential role of the GAG precursor polyprotein in morphogenesis and assembly of the simian immunodeficiency virus (SIV), we have expressed the gag gene of SIVMac using a baculovirus expression vector. Infection of insect cells with recombinant virus containing the entire gag gene results in high expression of the GAG precursor protein, Pr57gag. The recombinant protein is myristylated and is released in the culture supernatant in an insoluble particulate form. A point mutation in the N-terminal glycine codon (Gly----Ala) inhibits myristylation. This mutated product is highly expressed but is not found in the culture supernatant. Electron microscopy and immunogold labelling of infected cells show that the native Pr57gag protein assembles into 100-120 nm virus-like particles that bud from the cell plasma membrane and are released in the culture supernatant. The unmyristylated protein also assembles into particulate structures which only accumulate inside the cells. These results demonstrate that the unprocessed GAG precursor of SIV can spontaneously assemble into particles in the absence of other viral proteins. Myristylation of the Pr57gag precursor is necessary for its association with the cell plasma membrane, for budding and for extracellular release. 相似文献
6.
Expression of envelope glycoproteins of human immunodeficiency virus by an insect virus vector. 总被引:3,自引:2,他引:3 下载免费PDF全文
The envelope gene of human immunodeficiency virus was inserted into the genome of an insect virus vector (Autographa californica nuclear polyhedrosis virus). Upon infection of tissue culture cells, this recombinant virus produced immunoreactive polypeptides related to the envelope glycoproteins of human immunodeficiency virus. Serological survey indicates such polypeptides would be of value as antigens in diagnostics for acquired immunodeficiency syndrome. 相似文献
7.
Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins 下载免费PDF全文
Binley JM Sanders RW Master A Cayanan CS Wiley CL Schiffner L Travis B Kuhmann S Burton DR Hu SL Olson WC Moore JP 《Journal of virology》2002,76(6):2606-2616
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env. 相似文献
8.
Incorporation of glycosylphosphatidylinositol-anchored granulocyte- macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles 下载免费PDF全文
Skountzou I Quan FS Gangadhara S Ye L Vzorov A Selvaraj P Jacob J Compans RW Kang SM 《Journal of virology》2007,81(3):1083-1094
The rapid worldwide spread of human immunodeficiency virus (HIV) mandates the development of successful vaccination strategies. Since live attenuated HIV is not accepted as a vaccine due to safety concerns, virus-like particles (VLPs) offer an attractive safe alternative because they lack the viral genome yet they are perceived by the immune system as a virus particle. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this we generated chimeric simian immunodeficiency virus (SIV) VLPs containing either glycosylphosphatidylinositol (GPI)-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity and ability to enhance immune responses in vivo. Immunization of mice with chimeric SIV VLPs containing GM-CSF induced SIV Env-specific antibodies as well as neutralizing activity at significantly higher levels than those induced by standard SIV VLPs, SIV VLPs containing CD40L, or standard VLPs mixed with soluble GM-CSF. In addition, mice immunized with chimeric SIV VLPs containing either GM-CSF or CD40L showed significantly increased CD4(+)- and CD8(+)-T-cell responses to SIV Env, compared to standard SIV VLPs. Taken together, these results demonstrate that the incorporation of immunostimulatory molecules enhances humoral and cellular immune responses. We propose that anchoring immunostimulatory molecules into SIV VLPs can be a promising approach to augmenting the efficacy of VLP antigens. 相似文献
9.
Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line 总被引:4,自引:0,他引:4 下载免费PDF全文
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans. 相似文献
10.
While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently
for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none
has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this
century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E)
proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round
infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious
chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover,
this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric
VLPs containing dengue virus replicon as vaccine in the future. 相似文献
11.
Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages 总被引:4,自引:0,他引:4 下载免费PDF全文
Wahl-Jensen V Kurz SK Hazelton PR Schnittler HJ Ströher U Burton DR Feldmann H 《Journal of virology》2005,79(4):2413-2419
Ebola virus, a member of the family Filoviridae, causes one of the most severe forms of viral hemorrhagic fever. In the terminal stages of disease, symptoms progress to hypotension, coagulation disorders, and hemorrhages, and there is prominent involvement of the mononuclear phagocytic and reticuloendothelial systems. Cells of the mononuclear phagocytic system are primary target cells and producers of inflammatory mediators. Ebola virus efficiently produces four soluble glycoproteins during infection: sGP, delta peptide (Delta-peptide), GP(1), and GP(1,2Delta). While the presence of these glycoproteins has been confirmed in blood (sGP) and in vitro systems, it is hypothesized that they are of biological relevance in pathogenesis, particularly target cell activation. To gain insight into their function, we expressed the four soluble glycoproteins in mammalian cells and purified and characterized them. The role of the transmembrane glycoprotein in the context of virus-like particles was also investigated. Primary human macrophages were treated with glycoproteins and virus-like particles and subsequently tested for activation by detection of several critical proinflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-1 beta) and the chemokine IL-8. The presentation of the glycoprotein was determined to be critical since virus-like particles, but not soluble glycoproteins, induced high levels of activation. We propose that the presentation of GP(1,2) in the rigid form such as that observed on the surface of particles is critical for initiating a sufficient signal for the activation of primary target cells. The secreted glycoproteins do not appear to play any role in exogenous activation of these cells during Ebola virus infection. 相似文献
12.
Carbohydrate binding properties of the envelope glycoproteins of human immunodeficiency virus type 1
Here, we confirm and extend our previous findings on human immunodeficiency virus type 1 (HIV-1) envelope glycoproteinN-acetylglucosaminyl binding properties. We show the occurrence of saturable, temperature, pH, and calcium dependent carbohydrate-specific interactions between recombinant precursor gp160 (rgp160) and two affinity matrices:d-mannose-divinylsulfone-agarose, and natural glycoprotein, fetuin, also coupled to agarose. Binding of rgp160 to the matrices was inhibited by soluble mannosyl derivatives, -d-Man17-BSA and mannan, by -d-GlcNAc47-BSA and by glycopeptides from Pronase-treated porcine thyroglobulin, which produces oligomannose and complex N-linked glycans. Glycopeptides from Endoglycosidase H-treated thyroglobulin partially inhibited rgp160 binding, as did the asialo-agalacto-tetraantennary precursor oligosaccharide of human 1-acid glycoprotein for binding to fetuin-agarose. -d-Glucan and -d-Gal17-BSA had no or only limited effect. Also, surface unit rgp120 specifically interacted with fetuin-agarose and soluble fetuin, but in the latter case with a twofold reduced affinity relative to rgp160. After affinity chromatography, rgp160 was specifically retained by the two matrices and eluted by mannan in both cases, while rgp120 was not retained by fetuin-agarose but only eluted as a significantly retarded peak, which confirms its specific but weak interaction. Thus, rgp160 interacts with both oligomannose type, and the mannosyl core of complex type N-linked glycans, and its gp120 region plays a role in this interaction. Because fetuin and asialofetuin inhibit to nearly the same extent, the binding of rgp160 or rgp120 to fetuin-agarose, interaction with sialic acid or -d-galactosyl structures of complex N- or O-linked glycans can be ruled out. Specific rgp160 and rgp120 binding to ap-aminophenyl--d-GlcNAc-agarose matrix, which was inhibited by -d-GlcNAc47-BSA and by fetuin, confirms that HIV-1 envelope glycoproteins can also specifically interact with theN-acetylglucosaminyl core of oligosaccharide structures. 相似文献
13.
Requirements for incorporation of Pr160gag-pol from human immunodeficiency virus type 1 into virus-like particles. 总被引:4,自引:21,他引:4 下载免费PDF全文
The roles of the human immunodeficiency virus precursor polyproteins Pr55gag and Pr160gag-pol in viral core assembly were studied in CMT3-COS cells. To do this, the precursors were expressed separately by using a simian virus 40 late replacement vector system described previously. Consistent with previously published data, our results show that the Pr55gag precursor, when expressed alone, was able to form particles which had an immature morphology and that particle formation required the presence of a myristate addition signal at the amino terminus of the precursor. In contrast, the Pr160gag-pol precursor was not able to form particles when expressed alone, although it still underwent proteolytic processing. Coexpression of the two precursor polyproteins from separate vectors in the same cell resulted in processing of the Pr55gag in trans by the protease embedded in Pr160gag-pol and the formation of virus-like particles containing the products of both precursors. Proteolytic processing occurred independently of the presence of a functional myristate addition signal on either precursor. On the other hand, removal of myristate from one or the other precursor had nonreciprocal effects on virus particle formation. Cells expressing Pr55gag lacking myristate and Pr160gag-pol containing it did not produce particles. Cells expressing a myristylated Pr55gag and unmyristylated Pr160gag-pol still produced virus-like particles which contained nearly normal amounts of Pr160gag-pol. The results suggest that the incorporation of Pr160gag-pol into particles is largely determined by intermolecular protein-protein interactions between the two precursor polypeptides. 相似文献
14.
Insertion of the human immunodeficiency virus CD4 receptor into the envelope of vesicular stomatitis virus particles. 下载免费PDF全文
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly. 相似文献
15.
Incorporation of pseudorabies virus gD into human immunodeficiency virus type 1 Gag particles produced in baculovirus-infected cells. 总被引:1,自引:2,他引:1 下载免费PDF全文
L Garnier M Ravallec P Blanchard H Chaabihi J P Bossy G Devauchelle A Jestin M Cerutti 《Journal of virology》1995,69(7):4060-4068
The human immunodeficiency virus type 1 (HIV-1) Pr55gag precursors were previously shown to assemble and bud efficiently as noninfectious virus-like particles (VLPs) when expressed in baculovirus-infected insect cells. In this study, we examined the abilities of foreign antigens to be incorporated on the outer surface of HIV-1 Gag particles. We have used a dual recombinant baculovirus, expressing the HIV-1 Gag gene and gD gene under the control of the P10 and polyhedrin promoters, respectively, to obtain hybrid VLPs. Transmission electron microscopy of insect cells infected with the dual recombinant revealed very large aggregates of particles budding from the cell membrane. The release of VLPs into the culture medium was clearly different for a recombinant baculovirus producing solely HIV-1 Gag, for which particles were uniformly distributed all around the cell surface. Biochemical analysis of hybrid particles indicated that glycoprotein gD was packaged into HIV-1 Gag VLPs. Moreover, the carboxy-terminal p6 region of Gag polyprotein and the glycoprotein gD intracytoplasmic domain were not required for gD incorporation. The experiments described here clearly demonstrate that glycoprotein gD can be packaged with HIV-1 Gag particles and released from insect cells. 相似文献
16.
The product of the Rous sarcoma virus (RSV) gag gene, Pr76gag, is a polyprotein precursor which is cleaved by the viral protease to yield the major structural proteins of the virion during particle assembly in avian host cells. We have recently shown that myristylated forms of the RSV Gag protein can induce particle formation with very high efficiency when expressed in mammalian cells (J. W. Wills, R. C. Craven, and J. A. Achacoso, J. Virol. 63:4331-4343, 1989). We made use of this mammalian system to examine the abilities of foreign antigens to be incorporated into particles when fused directly to the myristylated Gag protein. Our initial experiments showed that removal of various portions of the viral protease located at the carboxy terminus of the RSV Gag protein did not disrupt particle formation. We therefore chose this region for coupling of iso-1-cytochrome c from Saccharomyces cerevisiae to Gag. This was accomplished by constructing an in-frame fusion of the CYC1 and gag coding sequences at a common restriction endonuclease site. Expression of the chimeric gene resulted in synthesis of the Gag-cytochrome fusion protein and its release into the cell culture medium. The chimeric particles were readily purified by simple centrifugation, and transmission electron microscopy of cells that produced them revealed a morphology similar to that of immature type C retrovirions. 相似文献
17.
18.
Transmembrane envelope glycoproteins of human immunodeficiency virus type 2 and simian immunodeficiency virus SIV-mac exist as homodimers. 总被引:1,自引:10,他引:1 下载免费PDF全文
M A Rey A G Laurent J McClure B Krust L Montagnier A G Hovanessian 《Journal of virology》1990,64(2):922-926
An 80-kilodalton glycoprotein (gp80) was produced in human immunodeficiency virus type 2 (HIV-2)-infected cells along with three envelope glycoproteins that we have recently reported: the extracellular glycoprotein (gp125), the envelope glycoprotein precursor (gp140), and the transient dimeric form of the precursor (gp300). gp125 and gp80 were detectable after the synthesis of gp140 and the formation of gp300. Using a specific monoclonal antibody, we showed here that gp80 is a dimeric form of the transmembrane glycoprotein gp36 of HIV-2. Dimerization of the envelope glycoprotein precursor and dimeric forms of the transmembrane glycoproteins were also observed in cells infected with simian immunodeficiency virus (SIV-mac), a virus closely related to HIV-2. Under routine conditions of our experiments (i.e., extraction by 1% Triton X-100 before polyacrylamide gel electrophoresis in sodium dodecyl sulfate [SDS]), monomeric forms of the transmembrane glycoprotein of HIV-2 and SIV-mac were only seldomly observed. Dimeric forms of the envelope precursors and the transmembrane glycoproteins are probably stabilized by extraction in the nonionic detergent Triton X-100 since such dimeric forms resist dissociation during subsequent electrophoresis in the presence of the ionic detergent SDS. However, the dissociation of these dimeric forms might occur when samples are prepared by extraction directly in 1% SDS or by incubation of the purified dimers at acidic pH. Dimerization of the envelope precursor might be required for its processing to give the mature envelope proteins, whereas the transmembrane dimer might be essential for optimal structure of the virion and thus its infectivity. 相似文献
19.
Expression and characterization of glycophospholipid-anchored human immunodeficiency virus type 1 envelope glycoproteins. 总被引:3,自引:10,他引:3 下载免费PDF全文
Four chimeric human immunodeficiency virus type 1 (HIV-1) env genes were constructed which encoded the extracellular domain of either the wild-type or a cleavage-defective HIV-1 envelope glycoprotein (gp160) fused at one of two different positions in env to a C-terminal glycosyl-phosphatidylinositol (GPI) attachment signal from the mouse Thy-1.1 glycoprotein. All four of the constructs encoded glycoproteins that were efficiently expressed when Rev was supplied in trans, and the two cleavable forms were processed normally to gp120 and a chimeric "gp41." The chimeric glycoproteins, in contrast to the wild-type glycoprotein, could be cleaved from the surface of transfected cells by treatment with phosphatidylinositol-specific phospholipase C, indicating that they were anchored in the plasma membrane by a GPI moiety. These GPI-anchored glycoproteins were transported intracellularly at a rate only slightly lower than that of the full-length HIV-1 glycoprotein and were present on the cell surface in equivalent amounts. Nevertheless, all four glycoproteins were defective in mediating both cell-cell and virus-cell fusion as determined by syncytium formation in COS-1-HeLa-T4 cell mixtures and trans complementation of an env-defective HIV-1 genome. 相似文献
20.
Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. 总被引:3,自引:6,他引:3 下载免费PDF全文
Incorporation of human foamy virus (HFV) envelope proteins into murine leukemia virus (MuLV) particles was studied in a transient transfection packaging cell system. We report here that wild-type HFV envelope protein can pseudotype MuLV particles, albeit at low efficiency. Complete or partial removal of the HFV cytoplasmic tail resulted in an abolishment or reduction of HFV-mediated infectivity, implicating a role of the HFV envelope cytoplasmic tail in the pseudotyping of MuLV particles. Mutation of the endoplasmic reticulum retention signal present in the HFV envelope cytoplasmic tail did not result in a higher relative infectivity of pseudotyped retroviral vectors. However, a chimeric envelope protein, containing an unprocessed MuLV envelope cytoplasmic domain fused to a truncated HFV envelope protein, showed an enhanced HFV specific infectivity as a result of an increased incorporation of chimeric envelope proteins into MuLV particles. 相似文献